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Abstract
Recently [Phys. Rev. Lett., 121:070402, Aug 2018] a quantum kicked rotor walk has been implemented in
momentum space by loading a 87Rb Bose-Einstein condensate into an optical pulsed lattice. The experimental
results showed overall good agreement with the theoretical predictions but also differed in the details. A
complementary argument to previous explanations will be given, consulting light shift induced effects and
dispersive properties of the system for causing the observed discrepancies.

Furthermore, from the field of mathematics topological principles have been passed on to physics. For
example the quantum hall effect can be understood in terms of Chern numbers as topological invariant. It has
been recognized that periodically driven quantum systems have the capacity to resolve the unconventional
topological matter. The double kicked quantum rotor with internal spin 1/2 degree of freedom is such a
system, displaying a connection between topologically protected edge states and the topologically invariant
winding number.
The mean chiral displacement is an experimentally obtainable observable that converges onto the winding
number. This offers interesting possibilities for measuring topological phase transition. Recognizing these
possibilities, investigations regarding the feasibility will be presented, suggesting a new protocol for an ex-
perimental implementation.

In [Phys. Rev. Lett., 121:070402, Aug 2018] wurde über einen im Impulsraum implementierten gekick-
ter Quanten-Rotator Zufallsprozess mit einem 87Rb-Kondensat in einem optisch gepulsten Gitter berichtet.
Insgesamt stimmte das experimentelle Ergebnis gut mit den zugrundeliegenden theoretischen Vorhersagen
überein, jedoch wurden auch Unterschiede in den Details beobachtet. Zu den bereits bestehenden Aus-
führungen wird eine komplementäre Erklärung abgegeben, welche den Grund der bestehenden Diskrepanzen
in „light shift“ induzierten Effekten, sowie den dispersiven Eigenschaften des Systems sucht.

Aus dem Gebiet der Mathematik heraus haben sich topologische Grundsätze auch zur Physik durchsetzen
können. So kann zum Beispiel der Quanten-Hall-Effekt mithilfe von Chernklassen als topologische Invarianten
beschrieben werden. Es blieb nicht unbemerkt, wie Systeme unter periodischer Entwicklung die Möglichkeit
besitzen, unkonventionelle Arten der Materie mit topologischen Eigenschaften herbeizuführen. Der doppelt
gekickte Quanten-Rotator mit einem internen Spin 1/2 Freiheitsgrad ist ein solches zeitlich periodisch en-
twickeltes System, welches einen Zusammenhang zwischen topologisch geschützten Randzuständen und der
topologisch invarianten Windungszahl besitzt.
Das experimentell zugängliche „mean chiral displacement“ ist eine Observable, die hin zur topologisch in-
teressanten Windungszahl konvergiert. Dies öffnet Türen für experimentelle Vermessungen topologischer
Phasenübergänge. Aufbauend auf diesen Möglichkeiten werden Optionen zur Realisierbarkeit eines solchen
Experimentes ausgelotet und in deren Konsequenz ein neues experimentelles Protokoll vorgeschlagen.
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Introduction

Motivation
The striking differences of quantum walks to their classical counterpart have proven themselves to be fruitful
ground for computer science applications. Due to interference along the path quantum walks demonstrate
drastically different outcomes compared to classical random walks. One of those main differences is that
compared to the classical counterpart, a particle in a quantum walk is by measurement on average expected
to end up further away from the origin. This offers possibilities for algorithms with up to exponentially faster
runtime. [1]
For actual experimental applications in the field of quantum computation, decoherence poses an issue inde-
pendently of the concrete implementation. In order to overcome the unavoidable problems of perturbations
and decoherence in future experiments, topological phases might play a vital role. The recognition of topo-
logical phases [2] finds application in so called „topological insulators“, revealing topologically protected edge
states. The stability of the topological invariant is translated upon these edge states, causing them to be
stable towards a great variety of perturbations.
Within this work, we will concentrate on the realization of quantum walks and topological phase transitions
in quantum kicked rotor configurations. The quantum kicked rotor is a toy system, that displays a large range
of dynamic properties and is experimentally accessible. The ambition is to accomplish a better understanding
of these systems and to lay some theoretical groundwork for possible future experimental implementations,
especially in the domain of topological phases.

Outline
This thesis deals mainly with two subjects. On the one hand, we will give reinterpretation for an already
existing quantum walk experiment in momentum space. [3, 4] On the other hand, we will present a proposal
for a possible experimental realization measuring topological phase transitions in a spin 1/2 Floquet system,
building upon the groundwork already set in Ref. [5, 6].

In the first chapter the theoretical background on quantum kicked rotor walks as an approximation to ideal
quantum walks will be discussed. Building upon this, the second chapter deals with the relevant background
on topological phases in quantum systems.

As already hinted above, the third chapter will present an elementary reinterpretation of a quantum walk
experiment, attempting to resolve discrepancies between theoretical predictions and experimental results,
discussed in Ref. [3]. Most importantly, the ambition is to explain the discrepancies without additional phys-
ical assumptions beyond effects intrinsic to the experiment. We will understand the observed experimental
effects as a result of dispersion in the system, highlighted by light shift induced alterations of the experimental
protocol and a narrow initial ratchet state in momentum space.

In the fourth chapter, we will discuss possibilities for how an experimental protocol measuring topologi-
cal phase transitions from Ref. [5] could be implemented. Also, the system will be tested for stability in
phase fluctuations that arise due to the experimental setup. The results will advocate the possibility that
such a system might meet successful experimental realization, if discussed experimental effects would be
sufficiently controlled.

Finally a brief summary will be given.
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1 Theoretical background on discrete time quantum walks
Model variables might be described in continuous time or in discrete time. For a continuous-time model, time
is considered to flow on the real number line. Consequently, a continuous-time process allows principally for
events to occur at arbitrary times. For a discrete-time process, in contrast, events would be considered to
happen at separate and distinct points in time. Such a process would be a sequence of events happening at
singular points in time. One might imagine an analog clock with continuously moving pointers, compared
with a digital clock with its display indicating the passing of time by jumping from one number to the next.
Random walk processes can be described too as being continuous or discrete in time. Furthermore, we
restrict ourselves to discrete-time random processes, meaning that the process consists of a succession of
random processes which happen at discrete points in time.

1.1 Quantum walks
Quantum walks are the quantum mechanical analog to the classical random walks. In a random walk, the
„walker“ traverses a given graph on a random trajectory. At each knot within the graph, he decides based
on assigned probabilities which will be the next knot in his journey. In the simplest case, this corresponds
to a one-dimensional walk on integer numbers Z, in which the walker decides to go either left or right, while
his decision is made by a coin toss (p = 1/2). By the central limit theorem, the probability distribution
converges both in time average or in ensemble average to a gaussian distribution that expands diffusively in
the walk-space as time continues.
In the quantum mechanical formulation, the process has to be understood as a sequence of operators. A
detailed introduction on quantum walks can be found in Ref. [1]. In such a walk the quantum system can
traverse all possible paths at the same time with a certain probability. Due to this, the different paths can
interfere with themselves, and new kinds of physics can form. In the operator sequence evolving the system,
one step consists of a coin and a step operator. The quantum system must provide an internal degree of
freedom (DOF) upon which the coin operator acts and an external DOF on which the step operator can
perform. An example would be a system with an internal spin-1/2 DOF that evolves on an external lattice
structure e.g. in momentum space, as has been experimentally implemented in Ref. [4]. For the interested
reader, further experimental implementations might be found in Ref. [7–24].
The coin operator mixes the internal quantum states at each position while the step operator shifts the internal
states respectively to an accessible position in the external DOF. We call a coin balanced if the probability
stays evenly distributed on the internal degrees of freedom (DOF) after the mixing by the operator. Well
known balanced coins for a two state system with internal states |1〉 ≡

(
0
1

)
and |2〉 ≡

(
1
0

)
are the Hadamard

coin Ĥ or the beamsplitter matrix Ŷ .

Ĥ =
1√
2

(
1 1
1 −1

)
Ŷ =

1√
2

(
1 i
i 1

)
(1)

Denoting the external states by |n〉, the step operator in 1D that links external states separated by d knots
on the lattice is given by:

Ŝ = |2〉〈2| ⊗
∑
n

|n+ d〉〈n|+ |1〉〈1| ⊗
∑
j

|n− d〉〈n| (2)

= exp (−in̂d · σz) (3)

Here σz features the third Pauli-matrix. The most usual case is reflected by a step operator that cou-
ples neighbored knots d = 1 in the external DOF. Frequently for initializing such a discrete-time quan-
tum walk, a different coin than the one used for the walk is used as gate. From this perspective, by the
equations given above, two protocols would be conducted. For a quantum walk consisting of j steps one
might implement Ûstep = [Ŷ Ŝ]jĤ, or Ûstep = [ĤŜ]j Ŷ . The final probability distribution is then given by
P (n, j) = P|1〉(n, j) + P|2〉(n, j). Both walk protocols are shown in Fig. 1.
Such a walk features ballistic expansion in the external DOF, corresponding to quadratic speedup compared
to the diffusive expansion of the classical counterpart. Note that due to the deterministic nature of quantum
mechanics the randomness enters the system only in the measuring process. If a random walk approach for
quantum computer algorithms is taken, this quadratic speedup in the expansion of the walk could even lead
up to exponential speedup in the algorithm, as described in Ref. [1, 25]. This bridge between the abstract
and the practical makes quantum walks a thrilling and promising field of research.
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Figure 1: The figure shows the ideal quantum walk, implemented with the initial state |ψ〉in = |2〉⊗(|1〉+|2〉).
The figure compares both protocols explained above. Ĥ denotes the protocol initialized by the Ŷ -coin and
executed with the Ĥ-coin, Ŷ vice versa. It is demonstrated that the ideal quantum walk does not distinguish
between the balanced coins. Here the external state is a lattice in momentum space. The walk is depicted
for j = 20 steps in the evolution.

1.2 Quantum kicked rotor
1.2.1 Quantum kicked rotor introduction

The quantum kicked rotor (QKR) is the quantum mechanical analog to the classical kicked rotor model.
The classical kicked rotor model describes a particle that is restricted to a ring. A homogeneous field is
periodically switched on for an infinitesimally short time, kicking the particle. Therefore the strength of the
kick depends on the particle’s position on the ring. The Hamiltonian to describe the system reads as:

H =
1

2
p2 + kcos(θ)

∞∑
n=−∞

δ(t− nτ) (4)

p being the momentum of the particle, k represents the strength of the kick, θ is the angle concerning the
orientation of the kicking field, and τ denotes the time between the kicks.
The problem however can be mapped to a line by interchanging the characteristics of ring and potential. In
this scenario, the kick potential itself has periodic properties and thus the kick strength itself is dependent
on the position θ. Since the particle is restricted to a line, it experiences the same kick-strength whenever it
has passed an entire period of the kick potential of θ = 2π. Therefore it is θ = x mod(2π).
The Hamiltonian for the quantum mechanical analog to the problem can be found by the correspondence
principle.

Ĥ =
1

2
p̂2 + kcos(θ̂)

∞∑
n=−∞

δ(t− nτ) (5)

Here the momentum operator p̂ and the angular momentum operator θ̂ satisfy the canonical permutation
relation. With the Hamiltonian one can compute the one cycle Floquet operator for the time evolution of
the system. As the system has a time-dependent Hamiltonian one has to consider the Dyson series.

Û(t+ τ, t) = T̂ exp

(
−i
∫ t+τ

t

Ĥ(t′)dt′
)

= exp

(
−i p̂

2

2
τ

)
· exp

(
−ikcos(θ̂)

) (6)

Here T̂ denotes the time ordering operator. The one-period evolution operator fractures into a part that
resembles the kick and into a part that resembles the free evolution of the system in between the kicks.
Depending on the choice of the parameters k and τ the model is able to display dynamical localization
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with stagnation in energy growth, anti-resonant behavior with the system not evolving at all, and resonant
behavior with quadratic growth in energy. A quadratic increase in energy corresponds to a ballistic expansion
in momentum space. As discussed in Sec. 1.1, a ballistic expansion is a signature of the quantum walks.

1.2.2 Rewriting free evolution operator

Due to the 2π periodicity of the potential, the Bloch theorem states that a basis of wave functions exists,
which are a solution to the Schrödinger equation. These solutions are given by:

ψ(x, t) = e−iβxψβ(x, t) (7)

Within this equation, the second component ψβ is, just as the potential periodic in x with the same period.
Even more importantly, the theorem implies that within our dimensionless units momentum fractures into
an integer part n and a non-integer part β ∈ [0, 1) that is conserved. This conserved part will furthermore
be called quasimomentum.

p = n+ β (8)

This provides a lattice structure within momentum space, which becomes especially clear if one considers
β = 0. The free evolution operator may be rewritten, in the following way:

exp

(
−i p̂

2

2
τ

)
= exp

(
−i (n̂+ β)2

2
τ

)
. (9)

Note that for zero quasimomentum β = 0 the free evolution operator becomes unity if τ = 4π. A free
evolution of τ = 4π corresponds to a full Talbot period. Since the free evolution operator does not contribute
an additional phase and the evolution of the system is strictly given by the kick operator, this configuration
is called resonant.
The introduction of quasimomentum accounts for the finite temperature of the system but is also slightly
violating the resonance condition. As will be seen later on several occasions, the overall behavior of the
system is not changed, if these perturbations are sufficiently small. In case of strong violation of the resonance
condition, e.g. by arbitrarily choosing τ = 7/5, the system experiences localization and stops to evolve rather
quickly. This being said to point out that respecting the resonance condition is of great importance for an
actual dynamically evolving system.
For a more detailed introduction to the quantum kicked rotor, Ref. [26–28] have been of use. For reverting
the theoretically chosen unit system back to experimental units consult Ref. [28, 29].

1.2.3 Quantum kicked rotor walks

The underlying system to the discrete-time quantum kicked rotor walk is the QKR. The system described in
Sec. 1.2 is expanded to a two-state system, since a true quantum walk demands an internal DOF, as described
in Sec. 1.1.

Ĥ =
1

2
p̂2 ⊗ 1 + kcos(θ̂)

∞∑
n=−∞

δ(t− nτ)⊗ σz (10)

From the perspective of the discrete-time quantum walk, the Floquet-operator acting on the external DOF is
to be understood as the step operator. As described in Sec. 1.2.2, the choice of τ = 4π and assuming β = 0
yields the resonant step operator.

Ûstep = Ûf Ûk = e−iτ
p̂
2⊗1e−ikcos(θ̂)⊗σz

τ=4π
=

(
e−ikcos(θ̂) 0

0 eikcos(θ̂)

)
(11)

Rewriting the kick operator like this, it becomes clear that the internal states experience a kick in opposite
directions. Compared with the step operator from the ideal quantum walk in Eq. (2), this operator does
not uniquely couple neighboured momentum classes. Dependent on the kick strength k this operator couples
several momentum classes at once. In Ref. [30] a range for values of k ∈ [0.75 : 2.75] is found in which the
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operator creates a good overlap between neighboured momentum classes. For smaller k, the walk becomes
too „lazy“, meaning that it barely evolves since the strongest coupling of a state is with itself. For too strong
k, the momentum classes which are too far away from the neighboured one and all those in between are
involved in the coupling. Thus this case is no longer a good approximation to the quantum walk described
in Sec. 1.1. Note that even in the given range for k, other momentum classes than the neighboring one are
involved. Here, the neighboring class is just the dominant partner.
The coin operator, in its general form, is written as a matrix depending on the horizontal and azimuthal
angles of a Bloch sphere. Two internal states are mixed by application of the following matrix:

M̂(α, χ) =

(
cos(α2 ) e−iχsin(α2 )

−eiχsin(α2 ) cos(α2 )

)
(12)

This matrix does not posses full SO(2) symmetry, as can be concluded from the diagonal elements. For the
purpose of this thesis however, Eq. (12) is sufficient.
As implemented in Ref. [4], α = π

2 corresponds to a balanced coin, while deviations from this choice return a
bias to the walk. For implementing a QKR walk, one would have to apply the mixing and the step operator
subsequently to each other.

1.2.4 Light shift phase

As described in detail in Ref. [29], the effective dynamics of the δ-kick behave differently than stated in
Sec. 1.2.1. The effective kick dynamics yield cos2 terms, which may be rewritten in the following [29]:

cos2(
θ

2
) =

1

2
(cos(θ) + 1) (13)

This yields the effective Hamiltonian, as experimentally implemented in Ref. [4].

Ĥ =
1

2
p̂2 + k[1 + cos(θ̂)]

∞∑
n=−∞

δ(t− nτ). (14)

In consequence the kick operator Ûk changes.

Ûk = e−ik(1+cos(θ̂)σz ) (15)

=

(
e−ik 0

0 eik

)(
e−ikcos(θ) 0

0 eikcos(θ)

)
(16)

This additionally introduced „light shift operator“ contributes as a phase difference of 2k between the internal
states. If the implementation of a QKR-walk is intended, this additional operator leaves a bias on the system
and thus has to be compensated. The light shift phase compensation has been attempted in Ref. [4] by
introducing a compensation phase φc within the coin operator M̂ .

M̂(α, χ)→ M̂(α, χ+ φc) (17)

Please note that this compensation can only succeed partially since the off-diagonal elements can not fully
counteract the on-diagonal elements of the light shift operator e−ikσz .

1.2.5 Quantum ratchet

A ratchet is a system in which spatial symmetry is broken. Imagine for example a saw-tooth ratchet from
an ordinary toolbox that allows for rotation in one direction and blocks rotation in the other one. Here the
symmetry breaking comes from the overarching system itself.
Since our overarching system is the QKR, breaking the symmetry does not come from the potential itself.
For our quantum ratchet, the symmetry break lies within the initial state itself. A comprehensive overview
of quantum ratchets as used here can be found in Ref. [31, 32].
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Figure 2: The figure shows the quantum kicked rotor walk, implemented for a ratchet state
ψin = 1√

5
|2〉 ⊗

∑2
n=−2 e

isπ/2|n〉 in momentum space. The walk is initialized by the Ĥ-gate and then evolved

under the Ŷ -coin. It is shown after j = 40 steps in the evolution and k = 1.45. It is demonstrated that the
internal states evolve in opposite directions of the walk space.

The quantum ratchet consists of at least two initial momentum classes, which have a relative phase shift of
eiπ/2 to each other.

|ψin〉 =
1√
S

∑
s

eisπ/2|n = s〉. (18)

These states can be realized by the application of Bragg pulses [33]. In Ref. [31], the gradient of the kick
potential is considered to be the driving force of the system. The strongest gradient and thus the strongest
net force is derived at the flanks of the kick potential. The shift of eiπ/2 in the quantum ratchet from Eq. (18)
has the purpose to peak the wave function at the flank of the kick potential. Thus, the system experiences a
rather directed kick and continues to evolve asymmetrically, as experimentally demonstrated in Ref. [31,32].
If this concept is applied to QKR-walks from Sec. 1.2.3, the respective internal states experience a kick into
opposite directions. That is why also the internal states evolve predominantly in opposite directions.

2 Theoretical background on double quantum kicked rotor

2.1 Topology in quantum walks
In advance of double quantum kicked rotor (DQKR) dynamics, a brief introduction to several ideas regard-
ing topological aspects of quantum walk systems will be given. For a detailed introduction of topological
phenomena in quantum walks, consult Ref. [34]. Also, read Ref. [5, 28] for a more detailed introduction to
the topological properties of the DQKR system.

Within topology, two bodies are sorted to the same topological class if there exists a continuous trans-
formation that translates from one body to the other, without need for „gluing“ or „cutting“. Arbitrary
deformations to the body are allowed, as long these restrictions are retained. Usually, from the perspective
of figures and shapes, the topological class of a body can be identified by its number of holes. In our case, the
"bodies" of interest are gapped Hamiltonians. Such a gapped Hamiltonian displays an energy gap between
the ground state (zero energy state) and the first excited state within its energy spectrum. The region in
between these energy eigenvalues is called „gap“. Similar to topology, two gapped Hamiltonians could be in
the same topological class if there were a continuous transformation that connects them, while maintaining
the zero energy gap. Furthermore, symmetries of the system play an important role in its topological classifi-
cation, since they will be a precondition to define topological numbers. In our case, the symmetry of interest
will be the so-called chiral symmetry.

Γ̂†ĤΓ̂ = −Ĥ (19)
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We will choose Γ̂ = 1 ⊗ σz. As demonstrated in Ref. [28, 34], Eq. (19) implies an energy spectrum that is
symmetric around zero. Thus every eigenstate can be assigned a chiral symmetric partner with the energy
of the opposite sign. In that sense zero energy eigenstates are a special case since they already are their own
chiral symmetric partner. Furthermore, we need to define requirements for the transformations we permit
as connection between equivalent Hamiltonians, similar to restrictions on transformations allowed in topology.

As might be guessed from the context of topology, the transformations allowed are supposed to be con-
tinuous. Similar to forbidding gluing and cutting, we will demand two additional conditions, such as the
conservation of the energy gap and the conservation of the symmetries of the system. Here the notion is of
chiral symmetry. If all three conditions are fulfilled, the transformation is called adiabatic and the Hamilto-
nians connected by this transformation are considered to be topologically equivalent. Similar to the number
of holes, one can classify topologically equivalent Hamiltonians by their topological invariant.

2.2 Winding number
For chiral symmetric Hamiltonian that also possesses an external degree of freedom with translational sym-
metry, a quantity called "winding number" is able to capture the topological properties of the system. Let us
assume the Hamiltonian at hand is chiral symmetric under Γ̂ = 1⊗σz and has a 2π periodicity in 1D position
space. As discussed in Sec. 1.2.2, Boch´s theorem guarantees a lattice structure in momentum space. The
2π-periodicity of the Hamiltonian in position space also implies 2π-periodicity for the energy spectrum. As
shown in Ref. [28], the chiral symmetry allows rewriting the Hamiltonian.

Ĥ = Ĥext ⊗ Ĥint =

(
0 H(x)

H∗(x) 0

)
= E(x)~n(x) · ~σ (20)

There it is explained that Ĥ can not be dependent on the components of Γ̂, since it has to fulfill the chiral
symmetry condition. Therefore the third component from the vector of Pauli-matrices must not contribute
and thus ~n(x) = (n1(x), n2(x), 0). Note that the chiral symmetry confines ~n to a plane.
Due to periodicity in local space by the Hamiltonian, both the symmetric energy spectrum ±E and ~n are
periodic in local space as well. Consequently, the winding number can be mathematically defined. As long
the energy gap around zero is respected and the chiral symmetry is not violated, the winding number is a
well-defined topological invariant. The winding number is defined for the trajectory of ~n, within one period.
It is computed by solving the following integral:

ν =

∫ 2π

0

dx

2π

(
~n× ∂~n(x)

∂x

)
3

(21)

Only the third component is considered due to the geometry of the cross product in combination with the
confinement of ~n to the plane. Consult Ref. [28] for illustration.

2.3 Periodically driven systems
For periodically driven systems one has to analyze the so-called effective Hamiltonian Ĥeff to discuss the
topological properties of the system. Therefore one rewrites the one-period Floquet operator.

Û = exp
(
−iĤeff · τ

)
(22)

Here τ denotes the duration of one period in the evolution. Of special interest will be systems that are
periodically driven in time. For such systems, the Floquet operator can be decomposed into its eigenstates
|n〉 with eigenvalues εn.

Û =
∑
n

= e−iεn |n〉〈n| (23)

From here it becomes clear that these „quasienergies“ are restricted to what can be understood as Brillouin
zone εn ∈ [−π, π). As shown in Ref. [28], these new edge states at ±π are, just like the zero energy states,
their own chiral symmetric partners.
For many aspects of quantum mechanics, the energy spectrum is already sufficient to discuss the relevant
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physics. Within the context of topology that is not correct. The quasienergy spectrum is unaffected by the
choice of the time frame for the Floquet operator since all time frames are equivalent by unitary transfor-
mation. However winding number from Eq. (21) is only well defined for chiral symmetric operators. Let
Û1 = exp(Ĥ1) and Û2 = exp(Ĥ2) be chiral symmetric. Ref. [28] presents, that if it is possible to rewrite the
Floquet operator.

Û = Û1 · Û2 · Û1 (24)

Then Û is chiral symmetric. In other words, the time frame must be symmetric under time inversion.

2.4 Topological phase transitions
If a chiral symmetric one cycle Floquet operator like in Eq. (22) is found and its symmetry and the energy
band gap are respected, then as described in Sec. 2.1, the topological winding number is contained. Let us
turn around this line of thought and assume that the operator stays chiral symmetric under the transforma-
tions that are taken. Since the operator stays chiral symmetric, the topological number ν can only change if
the bandgap closes. As illustrated in Ref. [34], the bandgap can only close at the previously discussed special
cases E = 0 and E = π.

Consider the following analogy on topology for some further intuition: For a moment understand the energy
band gap as separation in space between two bodies, such as e.g. two tori, and count the total number of
holes in the system as the topological number. Now apply continuous transformations that forbid gluing or
cutting. The topological number is contained, as long the separation of the bodies is contained. If the bodies
touch, the topological number may change. In that analogy, the bands can roughly be understood as the
two geometrical figures and the winding number as the topological number that may only change if the gap
closes. How the winding number changes in detail depends, similar like in the analogy, on the specifics of the
transformation.

2.5 Double quantum kicked rotor
The double quantum kicked rotor is a quantum system with an internal spinor degree of freedom, kicked
twice in one period. Similar to the QKR from Sec. 1.2.1 the kicks appear periodically for an infinitely short
time and come with different kick strengths k1 and k2. In between the kicks, the system undergoes a free
evolution. Its topological properties are discussed in Ref. [5]. The system Hamiltonian reads

Ĥ =
p̂2 ⊗ 1

2
+ k1 cos(θ̂)⊗ σ̂x ·

∞∑
n=0

δ(t− 2nτ) + k2 sin(θ̂)⊗ σ̂y ·
∞∑
n=0

δ(t− (2n+ 1)τ). (25)

The Floquet operator can be derived. Again a choice of parameters τ = 4π returns the resonant step operator:

Ûstep = e−i
p̂2

2 τe−ik2sin(θ̂)σye−i
p̂2

2 τe−ik1cos(θ̂)σx

τ=4π
= e−ik2sin(θ̂)σye−ik1cos(θ̂)σx .

(26)

Note that the Hamiltonian has no dependency on σz, as demanded in Sec. 2.2 as condition for chiral symmetry.
The demand on time inversion symmetry from Sec. 2.3 allows for only two possible time frames:

Û1 = e−i
k1
2 cos(θ̂)σxe−ik2sin(θ̂)σye−i

k1
2 cos(θ̂)σx (27)

Û2 = e−i
k2
2 sin(θ̂)σye−ik1cos(θ̂)σxe−i

k2
2 sin(θ̂)σy . (28)

As proven in Ref. [28], Ĥ1 ≡ k1cos(θ̂)σx and Ĥ1 ≡ k2sin(θ̂)σy are both chiral symmetric and thus also
Eq. (27) (28) are chiral symmetric, as stated in Sec. 2.3. To extract the topological properties, these operators
have to be rewritten into the following form:

Ûi =
∑
θ

e−iE(θ)~ni~σ (29)
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As presented in Ref. [5, 28], this succeeds with:

E(θ) = arccos(cos(K1)cos(K2)) (30)

n1,x =
sin(K1)cos(K2)

sin(E)
n1,y =

sin(K2)

sin(E)
(31)

n2,x =
sin(K1)

sin(E)
n2,y =

sin(K2)cos(K1)

sin(E)
(32)

With K1 = k1cos(θ) and K2 = k2sin(θ). Remember that the third component of ~n vanishes as explained in
Sec. 2.2 due to chiral symmetry. With Eq. (21) and the equations above, the topological winding number
can be computed. A phase diagram in dependency of k1 and k2 is shown in Ref. [5]. As hinted in Sec. 2.4,
the energy band gap only closes for E = 0 and E = π. This leaves us with the condition for a topological
phase transition of cos(K1)cos(K2)

!
= ±1.

2.6 Mean chiral displacement
Since the winding number is not an experimentally accessible observable a quantity that is connected to it,
called the mean chiral displacement (MCD), will be introduced. For the MCD the momentum distributions
of the two internal states evolved under the chiral symmetric evolution operators Û1 and Û2 are measured.
From this, the momentum expectation values for the internal states can be computed. The MCD describes
the difference between these two numbers.

Cl(t) = 〈ψt|n̂⊗−σz|ψt〉
≡ 〈ψ0|Û−tl (n̂⊗−σz)Û tl |ψ0〉

(33)

In Ref. [5] a theorem is discussed, that connects this measurable quantity with the topological winding
number.

C̄l(t) =
1

t

t∑
t̃=1

Cl(t̃)
t�1−−−→ νl

2
(34)

In Ref. [6] it has already been tested that this convergence becomes very good for an average over T = 10
applications of the evolution operator. Also, it is stated that already for T = 5 steps a good signal can be
seen.

Figure 3: Illustrated is the convergence of the time-averaged MCD for the chiral symmetric evolution operators
Û1 and Û2. The theoretical curves calculated by Eq. (21) are represented in black. For five applications of
the evolution operator, the steps are already quite well visible. A stronger convergence is achieved at higher
time steps.
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3 Reinterpretation of experimentally realized momentum space quan-
tum walk

3.1 Experimental framework
Recently in Ref. [4], a discrete-time quantum walk has been realized in momentum space by utilization of a
Bose-Einstein condensate (BEC). The walk demonstrated has been stable for roughly up to fifteen steps in the
evolution. It was reasonably well in line with theoretical predictions, but also displayed behavior deviating
from the previous analysis. The original interpretation of these discrepancies is presented in Ref. [3] and
assumed a thermal cloud of atoms that do not respond to the quantum ratchet. A reinterpretation has been
found, for the experimental effects deviating from the original theoretical prediction to be a result of the
choice of the initial state. Especially this new explanation does not rely on effects beyond the setup of the
experiment.
The underlying system to the experiment performed in Ref. [4] is the quantum kicked rotor from Sec. 1.2.
The internal states of the BEC of 37Rb atoms addressed by the protocol are the two Zeeman hyperfine levels
F = 1, mF = 0 and F = 2, mF = 0. This choice yields effectively an internal spinor degree of freedom.
The δ-pulses from the kick operator are experimentally realized by turning an optical pulsed lattice on and
off. The optical lattice supplied a kick strength of k = 1.45. By the detuning of the laser the internal states
experience respectively either positive or negative kick strength. The time in between two consecutive pulses
is chosen to be τ = 4π, resolving in the resonant step operator from Eq. (6). The choice of ordering the basis
rewrites the kick operator in the following manner:

Ûk = |1〉〈1|eikcos(θ̂) + |2〉〈2|e−ikcos(θ̂). (35)

The initial state chosen for the experiment is a ratchet state from Sec. 1.2.5. This state was generated by a
Bragg pulse and consisted of two initially involved momentum classes, |ψin〉 = |1〉 ⊗ 1√

2
(|n = 0〉+ i|n = 1〉).

The coin operator has been realized by the application of resonant microwave (MW) radiation, mixing the
internal states. Its implementation takes place during the free evolution. With α and χ being horizontal
and azimuthal angles on a Bloch sphere, the MW application is mathematically described by Eq. (12). In
Ref. [3, 4] the implemented experimental protocol is described. Similar to the protocols discussed in Sec.1.1,
the sequence implements the Hadamard-coin Ĥ1 = M̂(π2 , π) as a gate. Afterwards the walk is evolved by
the beamsplitter matrix Ŷ = M̂(π2 ,−

π
2 ). This way the initial state is applied to the full evolution operator

for j time steps (Ûstep)j = [T̂ Ŷ ]j [T̂ Ĥ]. Finally, the momentum distribution is measured for both internal
states in dependency of the number of steps, as P (n, j) = P|1〉(n, j) + P|2〉(n, j). If this walk is numerically
implemented, as shown in Ref. [3], one finds a walk that does quickly evolve away from its origin position.
Yet, the experiment observed a significant part of the wave function that does not at all evolve far away
from its initially occupied momentum classes. This is the experimental deviation from the theory, mentioned
above. As already hinted, this behavior was originally explained by a thermal cloud of atoms, not responding
to the ratchet and thus not evolving far away from their initial position in momentum space. An alternative
theory for the observed behavior is presented below.

3.2 Alternate protocol
As already mentioned in Sec. 1.2.4, reformulating the cos2 terms yields an additional term within the ex-
pression for the kick operator. For the two-state system at hand, the kick operator is given by Eq. (16). The
additional phase difference of 2k coming along with each kick would result in a deviation from the intended
QKR walk. All coin operators in the intended protocol are balanced (α = π/2) and thus the walk is ex-
pected to evolve symmetrically. To compensate for the light shift effect, the phase χ within the MW-pulses
is chosen to produce a symmetrically evolving walk. Therefore the second argument of M̂ is only indirectly
known, by the knowledge that the MW in combination with the light shift part of the kick operator is
supposed to combine for a balanced operator. Due to the limited access of knowledge to the phase, χ one
might suggest that effectively a different protocol has been implemented. A possibility of this idea would be
(Ûstep)j = [T̂ Ĥ]j [T̂ Ŷ ], since both Ĥ and Ŷ are balanced coins. This line of thought is supported if one looks
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at the combined effect of the light shift phase and coin matrix with yet unknown phase.

M̂(
π

2
, χ)e−ikσ̂z =

1√
2

(
1 e−iχ

−eiχ 1

)(
e−ik 0

0 eik

)
=

1√
2

(
e−ik e−i(χ−k)

−ei(χ−k) eik

)
≡ 1√

2

(
1 e−i(χ−2k)

−eiχ ei2k

) (36)

Where in the last step a global phase of e−ik has been pulled out. No matter the choice of χ, the light shift
effects can not be fully compensated. But experimentally, χ is chosen by finding a balanced coin. A balanced
coin can be found by choosing χ = 2k = π. This special choice would implement the following coin operator:

Ĥ2 =
1√
2

(
1 1
1 −1

)
(37)

This possibility appears to be rather plausible if one considers that indeed k = 1.45 ≈ π/2. The idea that
effectively a different coin might have been implemented is additionally supported by the problem that the
precise timing of the internal rotation of the atom is not known. This way the second phase angle in the
MW suffers effective fluctuations and thus is effectively not under full experimental control. At this point,
it becomes important to point out that the coin in Eq. (37) is an altered version of the Hadamard coin
M̂(π2 , π) ≡ Ĥ1, originally planned for the gate. In other words, there are two different Hadamard coins, with
their difference being that once the −1 lies once on the off-diagonal and once on the diagonal.

Ĥ1 =
1√
2

(
1 1
−1 1

)
Ĥ2 =

1√
2

(
1 1
1 −1

)
. (38)

Both coins have similar features: The upper two entries mix the internal states by addition, the lower two
ones by subtraction. Unexpectedly their implementation unveils a distinctively different behavior of the walk,
demonstrated in Fig. 4 a). It is seen that the implementation of the alternatively assumed protocol with
the use of the Ĥ1 coin returns the same distribution as the original proposal. If however the Ĥ2 coin is
implemented, we see a significant part of the wave function resting close to the zero momentum class.

3.3 Dependency of dispersion on initial state
The ideal quantum walk discussed shown in Fig. 1 does not display any different behavior between the differ-
ent walk protocols discussed above. That is due to the properties of its step operator. The ideal step operator
shifts the fraction of the wave function occupying a specific momentum class partially to the left and the
right. In this way, one can interpret the step operator in a way as it „looks“ at a specific momentum class.
Then within this specific class, it looks at the fraction of the internal states occupying it and shifts these
accordingly. Subsequently it „repeats“ this for all the remaining momentum classes. The point of this rather
trivial notion is that the ideal shift does not „care“ about the relative phase of the states when it executes
the shift. So as long the coin is a balanced coin and the same momentum classes are initially occupied,
all walks are expected to behave the same. Since when the coin is balanced, the shift operator only sees a
50% portion of each internal state in the respective momentum class. In summary, the observed difference
between different walk protocols in Fig. 4 a) must be a relic of the properties of the QKR-system, namely
dispersion discussed briefly below.
The initial state at hand is a ratchet state involving two momentum classes. As described in Ref. [31,32] and
Sec. 1.2.5, the purpose of the ratchet state is to peak at the flanks of the kick potential in angular momentum
space. Considering the gradient of the kick potential to be the driving force, it is strongest at the flanks of
the potential. This is utilized by the ratchet state. Since it is designed to center at the flanks of the potential,
it experiences the maximum net force the system can provide.
Naturally, we discuss the evolution of wave functions. Thus by the Heisenberg principle, a broader state in
momentum space gives a slimmer state in angular momentum space. Consequently adding more momentum
classes to the initial ratchet state, the initial wave function will be more densely peaked at the flank of the
potential. Thus by involving more momentum classes, the system experiences a more uniform kick strength.
This way a broad initial ratchet state in momentum representation decreases dispersive effects.
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Figure 4: Presented are momentum distributions for QKR walks after j = 20 steps in the evolution and
k = 1.45. Fig. a) presents the momentum distribution for different walk protocols. „Ŷ “ denotes the originally
proposed protocol from Sec. 3.1. „Ĥ1/2“ use the Ŷ -coin as gate and then the Ĥ1 or Ĥ2 coin for the walk.
While the „Ŷ “ and the „Ĥ1“ protocol resolve in the same distribution, the „Ĥ2“ protocol shows significant
deviations with a dominant peak in the center of the distribution.
For Fig. b) all the walks are initialized by the Ŷ -coin and continued by the Ĥ2-coin, assuming a light
shift induced protocol deviating from the original proposal from Ref. [4]. The labels denote the involved
momentum classes to the initial ratchet state. The numbers correspond to „s“ from Eq. (18). The more
momentum classes are included in the initial state, the less dominant becomes the peak in the center region.
Remember that the state from Ref. [4] only includes the momentum classes s = 0 and s = 1.

Also, the choice of the kick strength is not arbitrary. Looking at Sec. 1.2.3, one notes that k = 1.45 lies
within the interval of kick strengths that produce strong coupling between neighboured momentum classes.
As already explained there, also other momentum classes are involved. This is another source for dispersive
properties in the system. It is only likely that this origin for dispersion is highlighted for a narrow initial
ratchet. As already explained, a ratchet involving fewer momentum classes experiences effectively a rather
broad range of significantly contributing kick force from the gradient of the potential. Thus the way the
spreading upon the neighboring momentum classes happens should be less uniform across the wave function
for a narrow ratchet, resolving in stronger dispersion.
From this line of thought one can draw the following argumentation:
If relatively few momentum classes are involved in the initial ratchet, the state will be rather broad at the
flanks of the kick potential. Thus, the system will experience a less uniform force resolving from the kick.
That finally highlights the dispersive quantities of the QKR-system.

A final indication for dispersive effects causing the observed behavior may be discussed. In Ref. [30] it
has been observed that also for the Ŷ -protocol at higher kick strength k & 3 a peak emerges in the cen-
ter of the distribution. Numerical tests show that for lower values at k ≈ 0.75 the dominant peak in the
center of the Ĥ2-walk vanishes, even though an initial ratchet with only two involved momentum classes
is implemented. Higher values for k imply more dispersion in the system since more momentum classes
can be effectively linked by the kick operator. Also, it seems consistent with the originally proposed walk,
that at higher k more dispersion induces a peak in the center of the distribution. The present protocol
implementing the walk with the Ĥ2-coin seems to be more sensitive to dispersive effects, displaying a similar
behavior already at k = 1.45 for a narrow initial ratchet state. An illustration of this behavior is found in A.1.

The experiment involved only two states in the ratchet. As demonstrated in Fig. 4 b), involving already
three momentum classes to the initial state reduces the contribution of the center part of the wave function
significantly. Here again, the protocol with the Ĥ2-coin is considered. For an even broader ratchet, the
center part almost vanishes completely. In this case, the walk is much closer to the ideal quantum walk,
displayed by the predominant sidearms. Consequently, the rather dominant central peak is only observed
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under a relatively rare configuration: The walk being implemented by the Ĥ2-coin and a narrow initial mo-
mentum state. The narrow state then highlights the dispersive properties of the system, allowing for more
prominent deviations from the ideal quantum walk. Since the experiment used such a narrow state with only
two momentum classes, from the perspective of assuming a different walk protocol the walk is expected to
demonstrate this dominant non-vanishing part of the wave function in the middle of the distribution.

3.4 Analytical solution
For the originally proposed walk exists an analytical solution for the momentum distribution, computed in
Ref. [29]. Following along the original calculation a similar solution can be written down for the present case
of a different walk protocol, initialized by the Ŷ -coin and continued by the Ĥ2-coin. For solving this walk
one has to solve for the evolution UT after T steps.

Û = Ĥ2K̂ =
1√
2

(
1 1
1 −1

)(
e−ikcos(θ̂) 0

0 eikcos(θ̂)

)
(39)

The initial state is considered to be |ψin〉 = |1〉 ⊗ 1√
S

∑
s e

isπ/2|n = s〉. The calculation is done in A.2 for an
arbitrary large ratchet state. The solution found is exact, but the calculation itself does not reveal a deeper
insight into why exactly the different walk protocols demonstrate the different behavior. The momentum
distribution is given in Eq. (40). It satisfies the same expression as in Ref. [29] however, the coefficients are
different by a (−1)−l within the sums.

P (n, T ) = P|1〉(n, T ) + P|2〉(n, T )

=
1

2T+1S

( N∑
l=0

∑
s

al,1(−1)sJ(n−s) ((N − 2l − 1)k)

)2

+

(
N∑
l=0

∑
s

al,2(−1)sJ(n−s) ((N − 2l + 1)k)

)2

+

(
N∑
l=0

∑
s

al,1(−1)sJ(n−s) (−(N − 2l − 1)k)

)2

+

(
N∑
l=0

∑
s

al,2(−1)sJ(n−s) (−(N − 2l + 1)k)

)2


(40)

Here Jα(x) are Bessel functions of the first kind and N ≡ T − 1. The coefficients al,1/2 are given by:

al,1 =
1

2N

N/2∑
j=0

l∑
m=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l −m

)
(−1)N−l+m · 8m

+
1

2N
2

N/2∑
j=0

l−1∑
m=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l −m− 1

)
(−1)N−l+m · 8m

− 1

2N
2

N/2∑
j=0

l∑
m=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l −m

)
(−1)N−l+m · 8m.

(41)

al,2 =
1

2N

N/2∑
j=0

l∑
m=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l −m

)
(−1)−l+m · 8m. (42)

Even though no deeper conclusion can be drawn, it is not too surprising that different coefficients lead up
to a different shape of the final momentum distribution. Since interference phenomena are discussed, the
walk is quite susceptible to changes within the way the Bessel functions are weighted in the sums. The
„laziness“ of the walk, meaning that there is a certain probability not to change the momentum class after a
kick, is reflected in the walk being described by Bessel functions since those have generally a non-vanishing
probability at Jα(x = 0). Note that Eq. (40) reflects the expected dependence on the number of time steps
and the number of included momentum classes to the initial ratchet state.
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Figure 5: Shown are momentum distributions at two different time points in the evolution. Compared are
the numerical simulations and the analytical solution from Eq. (40). It is demonstrated that the solution is
exact since no deviations from the simulation can be found.

3.5 Comparison between competing theoretical explanations

Figure 6: Shown are two walk protocols implemented at k = 1.45, alternating from the original proposal.
The plots in the upper row show the alternate walk protocol, using the Ŷ -coin as gate and the Ĥ2 coin to
evolve the walk. The walks from the lower row are also implemented with the Ŷ -coin but then evolved by the
light shift induced coin from Eq. (36) with χ = π. Both slightly different coins share the same characteristics,
such as linearly evolving sidearms and a significant part in the distribution not evolving at all. From left to
right quasimomentum is increased. Image a) and d) correspond to the ideal case βFWHM = 0~G, b) and
e) correspond to βFWHM = 0.01~G and finally c) and f) are implemented with βFWHM = 0.025~G. The
images are created by an average over 1000 realizations.
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All thoughts so far did not yet consider a finite quasimomentum distribution. Due to finite temperature,
this does not satisfy the experimental condition. Consequently for β 6= 0 the free evolution operator deviates
from resonant configuration, resolving in an operator that deviates from unity. Since the MW is applied to
the system during the free evolution, the requirement for re-including the free evolution in the simulation
protocol is met in the following way:

M̂(α, χ)→ e−i
(n̂+β)2

2 τM̂(α, χ) (43)

To reflect the experimental setup from Ref. [4] in the simulations, the duration of the MW application is
taken to be τ = 4π and β is drawn from a Gaussian distribution of certain width. More physically accurate
would be a Thomas-Fermi distribution, yet Gaussian random numbers are numerically easily accessible and
also satisfying for our purpose. The impact of quasimomentum distribution of finite width βFWHM is shown
in Fig. 6.
Here two slightly different walks are compared to each other. Once, the implementation with Ŷ -gate and Ĥ2-
coin for the walk and in the other case the walk is implements Eq. (36) at χ = π and k = 1.45 as coin. Both
protocols are suspected to be effectively closer to what has been experimentally implemented. Fundamentally,
they show the same characteristics. Such as a dominant non-vanishing part in the center of the distribu-
tion and sidearms evolving linearly in momentum space. These characteristics stay even visible for higher
quasimomentum but become less distinct. In Ref. [4] a quasimomentum distribution of βFWHM = 0.025~G
is reported. This value is taken by an indirect measurement and thus not precisely known. This is to point
out since the differentiation between the sidearms and the center region, within the simulations of Fig. 6,
is already less distinct at βFWHM = 0.025~G than within the experimental data shown for comparison in
Fig. 7. This detail resolves if the width of the quasimomentum distribution had been overestimated.

Yet it is also to point out that the experimental data shows exactly the discussed characteristics from
above, meaning a dominant central region and linearly evolving sidearms. The central area is not at all pre-
dicted in the originally proposed walk shown in Fig. 7 d). This had been fixed in Ref. [3], shown in Fig. 7 b),
by proposing the already mentioned thermal cloud of atoms. However, in this explanation, the shape of the
sidearms stays the same and reminds more of a „fish-bone structure“ instead of the experimentally observed
linear shape.
Both characteristics follow as a natural consequence if one assumes that effectively the alternative protocol,
as suggested in Sec. 3.2, had been implemented. Even though the central region were successfully explained
by a different theory, additional physical effects beyond the basic experimental setup had to be introduced.
Within the theory presented in this thesis, the observed behavior of the walk follows from less assumptions.
Above in Fig. 4, strong predictions have been made regarding the fraction of the central region in the dis-
tribution, in dependency of the number of momentum classes included in the initial ratchet. This opens the
door for testing the correctness of the reinterpretation for the experiment, since the thermal cloud would be
expected to appear independently of the size of the ratchet. Imagining the experiment would be repeated
with at least three initial momentum classes, and the fraction of the wave function that was observed would
or would not change accordingly, one could discriminate for one of the theories.
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Figure 7: Quantum kicked rotor walks realized with k = 1.45. Image a) and b) are taken with kind permission
of the authors from Ref. [3] for reasons of comparison. Image a) shows the experimental data and b) shows
the theoretical explanation, assuming the proposed protocol and introducing a thermal cloud of atoms that
do not respond to the ratchet. Image c) and d) are created in the course of this work. They show walks
that are numerically simulated at βFWHM = 0.01~G. While c) presents the alternate protocol with Ŷ -coin
as gate and Ĥ2-coin for the walk, d) presents the walk with Ĥ2-coin as gate and Ŷ -coin for the walk. So c)
is the alternatively suggested protocol from Sec. 3.2 and d) corresponds to the originally assumed protocol.
The previous theory in b) can explain the central area in the distribution. Still, the linear expansion of the
sidearms is described more clearly by c), assuming a light shift induced alternative protocol.
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4 Possibilities for experimental implementation of Floquet topolog-
ical phases

In Ref. [5], possibilities for experimental measurement of the topological phases within the DQKR system
from Sec. 2.5 have been discussed. Similar to the quantum walk experiment from Ref. [4], a BEC would be
evolved in momentum space. Here, the system would be evolved under the chiral symmetric operators Û1 and
Û2. The winding number would be measured by the mean chiral displacement from Sec. 2.6 in dependency
of k2. As stated above, there are two time-frames in the system that satisfy the required symmetries, so that
topological winding is a well-defined quantity. To implement the operators with the setup from Ref [4], using
the kick and MW operators from Sec. 1.2.3, Û1 and Û2 are rewritten as already suggested in Ref. [5, 6, 28].
Here, since the setup from Ref [4] is only able to supply σz kicks but not the required σx or σy kicks, the
system is „rotated “ by MWs into the correct orientation and then experiences a kick by an optical pulsed
lattice, as in the quantum walk experiment.
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Û2 = e−i
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K̂1 = e−ik1cos(θ̂)σz (46)

K̂2 = e−ik2sin(θ̂)σz (47)

K̂
1/2
1,2 ≡ K̂1,2(

k

2
, θ) (48)

The operator M̂ is the same as before from Eq. (12). Since there has been an error in sign along with the
calculations in Ref. [6, 28], rewriting the operators is presented again in B.1 to avoid further confusion. The
impact of lattice vibrations upon the stability of the topological phases was already investigated in Ref. [6]
and was found to have a rather weak impact.

The rewritten operators from above leave us with two problems not yet considered. The microwaves have to
be applied for a certain amount of time to fully rotate the system and produce a strong signal. Like before
this condition is included by Eq. (43).
Another complication is that the evolution operator shows a large amount of MW rotations. Within an
experimental implementation complications like atom loss of the BEC or decoherence are expected to faint
the signal significantly, if the experimental duration becomes too long. The fainting of signal over time is
already seen in Fig. 7 a). Imagining every MW would be applied for a full Talbot period τ = 4π, like in
Ref. [4] to satisfy the resonance condition, the demand on many MW applications here would pose a problem
to measure the MCD for a sufficient amount of applications of Û1,2.
It has been reported [35] that experimentally the shortest realizable MW ontime to still produce a good signal
lies close to a quarter of the Talbot time. If chosen exactly a quarter Talbot time, τ = π in our units, a new
resonance condition can be formulated. Remembering that the free evolution operator only becomes unity
by choosing τ = 4π and neglecting quasimomentum, it is not obvious that a shorter ontime of the MW will
actually implement a resonant protocol, without the phase from the free evolution operator disturbing the
system to a degree that topological winding would not be measurable anymore. Indeed, if we would apply
the operators Û1,2 in their form presented in Eq. (44), (45) for t times with a MW duration of τ = π, the
protocol turns out to behave anti-resonant, as will be investigated below.
In other words: The free evolution of the system during the MW application poses a problem that we intend
to encounter by holding the MW ontime rather short. It will turn out, that this will demand a modified
protocol for the implementation of Û1,2. This modification will turn out to save MW rotations, which will
additionally simplify the experiment.
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4.1 Antiresonant protocol
Some preparations for proving the protocol being resonant or antiresonant respectively are shown in B.2,
using similar identities for the free evolution operator then in Ref. [28]. The bottom line is that the free
evolution operator, by neglecting quasimomomentum, can be identified with the shift operator in local space:
P̂ 2(β = 0, τ = π) = T̂ (π). For all further analytical considerations we focus on the case P̂ (β = 0, τ = π) ≡ P̂π.
Furthermore the evolution of the quantum system is considered as a Floquet problem, meaning that the full
evolution operator is given by applying the one cycle evolution operator just t times.
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In order to introduce a finite MW-ontime of τ = π one substitutes as stated above M̂(α, χ) → P̂ M̂(α, χ).
First we consider the impact of the free evolution on Û2

1 .
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= P̂ 2
π (55)

= T̂ (π) (56)

In the last step, we have used that from the first to the second line in the equation above we find inverse
MW-rotations next to each other. Subsequently, inverse operators line up next to each other so all that
remains are the P̂π-operators in the front and the end of the equation. For arbitrary t one can give the
following case distinction:
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Since the calculation of Û2
2 follows in a completely analogous fashion, one can just write down the result.
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In summary, the finite MW-ontime of τ = π causes every second kick operator to be inverted. Considering the
evolution as a Floquet-problem, this causes inverse operators to end up next to each other. This again results
in the configuration being antiresonant. Therefore it is impossible in the „Floquet-protocol“ to measure the
MCD for higher timesteps then t = 1. Since from Eq. (34) the MCD converges upon the winding number
only for an average over many Cl(T ), executing the experiment within this protocol using a MW ontime of
τ = π is not possible.
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4.2 Resonant protocol
Rewriting of the operators as in Eq. (44), (45) can be understood in the following manner: Since the kicks
can not be executed in σx or σy direction the system has to be rotated, so an equivalent kick is created by
actually applying a σz pulse. Afterward, the system is rotated back to its original „orientation“.
Both Û1 and Û2 have kicks of half strength at their beginning and ending, to assure chiral symmetry. When
the operators are applied subsequently, pay attention to the section in the protocol where two kicks of half
strength follow directly upon each other. First, we have a forward rotation to apply the kick, followed by a
rotation back to the original orientation. This section repeats. Consequently in between one rotates backward
and forward again to apply the second kick of half strength. In other words, the MW rotations in between
serve no purpose, since they are inverse to each other. Look for example at the corresponding sequence of
Û1.
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Exploiting this, the number of necessary MW applications can be reduced and the protocol can be rewritten.
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Û t2 = M̂(−π
2
,
π

2
)K̂

1
2
2 M̂(

π

2
,
π

2
)
[
M̂(−π

2
, 0)K̂1M̂(

π

2
, 0)M̂(−π

2
,
π

2
)K̂2M̂(

π

2
,
π

2
)
]t−1

· M̂(−π
2
, 0)K̂1M̂(

π

2
, 0)M̂(−π

2
,
π

2
)K̂

1
2
2 M̂(

π

2
,
π

2
)

(61)

Again the finite MW-ontime is introduced by substituting M̂(α, χ)→ P̂πM̂(α, χ). Since again the calculations
for Û t1 and Û t2 are analogous we will just present it for the first evolution operator.
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In other words: Every second kick-operator in the sequence gets inverted. In this protocol the second kick
operator is now exclusively K̂2, so no operator annihilation happens. As stated above, analogous calculations
can be made for Û2.

Û2
t

= P̂πM̂(−π
2
,
π

2
)K̂

1
2
2 M̂(

π

2
,
π

2
)
[
M̂(−π

2
, 0)K̂−11 M̂(

π

2
, 0)M̂(−π

2
,
π

2
)K̂2M̂(

π

2
,
π

2
)
]t−1

· M̂(−π
2
, 0)K̂−11 M̂(

π

2
, 0)M̂(−π

2
,
π

2
)K̂

1
2
2 P̂πM̂(−π

2
,
π

2
)

(66)

At this point, it is probably useful for better understanding to grasp the difference between the resonant and
the antiresonant protocol in a more simplified scheme. Due to the similarity between the two chiral symmetric
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operators, we simply focus on U1. For the sake of clarity, the MW rotations and translation operators are
not written down in the scheme presented below. The operators inverted by the impact of the free evolution
are printed in red.
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4.3 Symmetry inversion in local space
For the resonant case, there is no operator annihilation, but still, every second operator experiences an
inversion. This is equivalent to the statement that within the kick operators K̂1 and K̂2, the sinus and
cosinus are interchanged. This can be understood if instead of its square one identifies the operator P̂π with
a shift in local space. Since it is not entirely trivial that this equivalence holds, it is explained in full detail
in B.3. Now consider that every kick is framed by two MW rotations:

M̂(α1, χ1)K̂(θ)jM̂(α2, χ2)→e−i n̂2 πM̂(α1, χ1)K̂(θ)j e
−i n̂2 πM̂(α2, χ2) (67)

= M̂(α1, χ1)e−i
n̂
2 πK̂(θ)j e

i n̂2 πe−in̂πM̂(α2, χ2) (68)

= M̂(α1, χ1)K̂(θ +
π

2
)j e

−in̂πM̂(α2, χ2) (69)

The remaining shift operator e−in̂π ≡ T̂ (π) causes the already known inversion of every second kick, causing
the protocol to be either resonant or antiresonant respectively. Taking a look at how precisely the kick
operators K̂1 and K̂2 from Eq. (46), (47) are affected by the shift from including the free evolution, one finds
for their dependency in angular momentum:

sin(θ +
π

2
)→ cos(θ) (70)

cos(θ +
π

2
)→ −− sin(θ) = sin(θ) (71)

The second minus for the sinus comes from the θ = π shift of every second operator within the resonant proto-
col. In fact, the consideration of finite ontime of τ = π for the MW causes the MCD and thus by Eq. (34) the
topological measurements to experience a change in sign. It is rather clear that here the reason is to be found
in a symmetry change in local space. As shown in Fig. 8, the cause for that are the momentum distributions
of the internal states to be mirrored at zero momentum class. It turns out that only the relative shift of the
kicks from K̂1 to K̂2 being ±π2 determines the direction of evolution of the internal states. Thus, one can as-
sign to the kick sequence in local space an „orientation“ number ±1, that determines the direction of evolution.
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Figure 8: Orientation change in local space. The upper images illustrate „orientation 1“, the lower ones
„orientation -1“. The first two images in each row intend to illustrate two equivalent configurations of the
kick lattice structure. One could assume for example that the „red kick“ appears first in the protocol, followed
by the „blue kick“. Then the relative shift of the kicks is changed from one orientation to the other. The
rightmost images show the momentum distributions of the internal states for the corresponding orientation.
It is shown that the change of orientation mirrors the distributions at zero momentum. Here, by the choice
of the initial state |ψin〉 = |2〉 ⊗ |n = 0〉 the state |2〉 evolves symmetrically in momentum space. That effect
will be discussed in more detail in Sec. 4.5.

In summary, if finite MW ontime of τ = π is considered in the resonant protocol, the orientation of the
kick lattice changes. This way the momentum distribution for both of the internal states is caused to evolve
in opposite direction. Thus the momentum expectation value for each internal state changes the sign, and
since the MCD from Eq. (33) is computed by the difference of the momentum expectation values of the
internal states, it also changes sign. When then the topological number is computed by Eq. (34), it becomes
clear that also here a change in the sign will be found.
It is important to note that the change of sign is effectively only a result from the inversion of the lattice
structure in local space and the underlying physical theory from Sec. 2.5 on topological phase transitions is
left unaffected.

4.4 Compensation of sign
Since the change of sign within the topological number is due to the change of orientation discussed above,
it can be compensated by changing the orientation back to the original configuration. One option to do this
would be to change the phases within the MW rotations. Therefore focus on the following sequence of the
evolution operators:

M̂(−π
2
, 0)e−ik1cos(θ)σzM̂(

π

2
, 0) = M̂(

π

2
, 0)eik1cos(θ)σzM̂(−π

2
, 0) (72)

A proof for Eq. (72) is given in Ref. B.4. The change suggested here would compensate for the additional
minus sign in the exponent coming from the free evolution.
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4.5 Symmetry in the evolution
If one of the internal states evolves symmetrically in momentum space it becomes irrelevant for the measure-
ment of the MCD. In this case, its momentum expectation-value is zero and this state does not contribute
to the MCD. Therefore all the information about the topological winding number would be contained in
the other internal state. Since the MCD measures the difference in the expectation-value in the momentum
distribution of the two internal states, the momentum-expectation value for the internal would need to be
measured respectively. If it would be sufficient to measure only one instead of two internal states, the amount
of experimental effort could be significantly reduced. In the following, some observations from numerical ex-
periments will be presented.

1) If one of the internal states, for example, |2〉 is defined to be a symmetric initial state in momentum-
space and the state |1〉 has no contribution to the wavefunction (e.g. |ψin〉 = |2〉⊗ |n = 0〉), then the |2〉-state
will continue to evolve symmetrically around the symmetry-axis of the initial state. Therefore the informa-
tion for the winding number is completely carried by the |1〉-state.
2) If the initial state still has no contribution by |1〉, but the initial state is not defined symmetrically in |2〉,
then the state |2〉 does not evolve symmetrically and again both internal states contribute to the MCD.
3) If the initial state has a contribution of |1〉 and |2〉, then both internal states contribute to the MCD and
none can be neglected.

If, of course, we are in case 1) and thus the momentum expectation value of one of the internal states
is zero, it is not necessary to measure for a specific internal state at all. Here one could simply measure
P (t) = P (t)|1〉 + P (t)|2〉. From this distribution it is possible to calculate the expectation value, which then
becomes identical to the MCD: 〈P1,2(t)〉 ≡ C1,2(t). This would enable us to use the same measurement
apparatus as the one already used for the quantum walk experiment in Ref. [4].

4.6 Stability
As already mentioned above, the impact of lattice vibrations has already been numerically investigated in
Ref. [6]. Furthermore, the precise timing of the internal rotation of the atom is practically unknown within
the experimental realization. This uncertainty leads effectively to fluctuations within the second argument in
the MW rotation M̂(α, χ) among the ensemble of atoms. This section will focus furthermore on the stability
of the system under the impact of such phase fluctuations.

4.6.1 Numerical framework regarding stability, simulations

The simulations will measure the MCD from Eq. (33) for fixed k1 = π/2, while k2 ∈ [0, 2.5π] is scanned.
k1 and k2 are chosen to create comparable images to Ref. [5, 6]. Using Eq. (34), for each configuration for
k1, k2 the topological winding number will be computed for five applications of the evolution operator Û1,2.
Five of such timesteps are considered to lie in an experimentally accessible range. The following function,
furthermore referred to as „fidelity“, is defined to quantify the impact of the perturbation on the system.

Fi(∆) =

∫ 2.5π

0.4

∣∣ C̄iunperturbed
(k2)− C̄iperturbed

(∆, k2)

(2.5π − 0.4) ∗ C̄iunperturbed
(k2)

∣∣dk2 (73)

The fidelity is dependent on the strength of the perturbation ∆. Fundamentally it computes the difference
between the perturbed and the unperturbed topological curve over the full range of k2. Additionally, the
function is rescaled by the integral of the unperturbed curve and the range of integration. This way it is
ensured that it returns zero if the system is unperturbed and one if the signal has fully decayed. The lower
border of integration is chosen above zero because the curves show a transition to the first plateau already
seen in Fig. 3, that does not appear in the phase diagram presented in Ref. [5]. Thus this range is excluded
for the fidelity. Every data point in the simulations is calculated for 1000 realizations, resolving in a good
convergence.
The phase fluctuations are implemented as the following:

M̂(α, χ)→ M̂(α, χ+ ∆χ) (74)
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Since it is not entirely obvious how the MW phase fluctuations would look like in detail, several models are
studied. These models differ in the way in which the random number ∆χ is chosen within the simulation.
The models under investigation are the following:

Model 1: „static“ phase = one random number per realization, fixed for all MW´s
∆χ ∈ uniform[−∆,∆]

Model 2: „dynamic 1“ phase = one random number per MW application
∆χ ∈ uniform[−∆,∆]

Model 3: „dynamic 2“ phase = phase accumulation within one realization
∆χn =

∑n
i=1 = δχi, with δχi ∈ uniform[−∆,∆]

δχi is drawn individually for each MW application

The last model corresponds to a „phase-drift “ and describes an open quantum system. Since it assumes a
dependency from one fluctuation in the MW rotation to the next, it is probably the most realistic of the
three models.

In the last step one also has to consider the free evolution without neglecting quasimomentum, to simulate
the condition of the system at finite temperature. Since we focus on the case τ = π we are only interested
in the resonant case from Sec. 4.2 and below. In the considerations so far quasimomentum has always been
neglected. Now a quasimomentum distribution of finite width is included by Eq. (43). The random numbers
for the β-distribution are drawn again from a Gaussian distribution, here centered at µ = 0 and σ = 0.01~G.

4.6.2 Simulations

Fig. 9, 10, 11 below show the implementation of what is discussed in Sec. 4.6.1. Left, the fidelity curve in
dependency of the range ∆, from which the random numbers simulating the fluctuations are drawn, is shown.
The image in the center shows an example of the deformation of the topological step function at ∆ = π/6,
while in the rightmost image the impact of adding finite quasimomentum is illustrated. The change of sign
from the resonant protocol is compensated, as suggested in Sec. 4.4.

Similar images to Fig. 9, 10, 11 can be found in B.5, exploiting the symmetry from Sec. 4.5 by measuring
the momentum distribution of only one internal state. These images again show fundamentally a similar
behaviour to what is seen in Fig. 9, 10, 11.
We conclude that the static-phase model has only a very weak dependency on the introduction of phase
noise. Even for large fluctuations, no significant deviation can be observed from the fidelity curve. Both
the dynamic phase models display a stronger dependency on the range of fluctuations. The fidelity curves
converge to one (full signal loss) rather quickly, after passing a critical threshold at approximately ∆ = π

2 .
These models suggest that the fluctuations in phase need to be kept under control if the topological phase
transitions shall stay observable. Even though more deformed in the „phase-drift“ model from Fig. 11, the
exemplary images at ∆ = π

6 suggests that if the phase noise is kept under a sufficient amount of control, the
topological steps are still well observable. For a better interpretation of the fidelity curves, consult Fig. 19,

Figure 9: Implementation of Model 1. The fidelity shows a weak dependency on the range of phase fluctuations
∆. Thus the exemplary image at ∆ = π

6 is close to the ideal case for 5 steps in the evolution. It is seen
that quasimomentum is distorting the steps slightly. The simulation is implemented for 1000 realizations and
both internal states are measured to compute the MCD. The initial state is given by |ψin〉 = |2〉 ⊗ |n = 0〉.
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Figure 10: Implementation of Model 2. The fidelity shows a strong dependency on the range of phase
fluctuations ∆. The exemplary image at ∆ = π

6 shows already some perturbations within the topological
curve. The impact of quasimomentum leads to some additional deformation but does not pose a great threat
to the „survival “ of the steps, as long the phase noise within the MW is controlled. The simulation is
implemented for 1000 realizations and both internal states are measured to compute the MCD. The initial
state is given by |ψin〉 = |2〉 ⊗ |n = 0〉.

Figure 11: Implementation of Model 3. The fidelity shows a strong dependency on the range length of the steps
within the phase drift, dependent on ∆. The exemplary image at ∆ = π

6 shows already stronger deformations
within the topological curve, even though the steps stay visible. The impact of quasimomentum does not
significantly contribute to the deformation of the curve. The simulation is implemented for 1000 realizations
and both internal states are measured to compute the MCD. The initial state is given by |ψin〉 = |2〉⊗|n = 0〉.
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Figure 12: Demonstrated are the fidelity curves for both dynamic phase models. In the upper images,
the curve is created by measuring the MCD including both internal states. The lower images exploit the
symmetry from Sec. 4.5. It can be concluded that even though the symmetry is broken by perturbations
to the system, the stability towards these perturbations is comparable for both cases. Since no significant
negative influence can be seen by simplifying the measurement process, the suggestion from Sec. 4.5 remains
reasonable. Every data point is taken from implementation with 1000 realizations. The initial state is given
by |ψin〉 = |2〉 ⊗ |n = 0〉.

explicitly showing the phase decay in dependency of ∆.
Within all three models, the impact of quasimomentum plays a subordinate role. Consider the benefits of the
resonant protocol, which allows for a MW ontime of τ = π while reducing the amount of MW rotations and
thus the number of free evolution operators. As stated above, the ideal evolution operator becomes unity for
τ = 4π, the full Talbot time. The resonant protocol from Sec. 4.2 allows to drastically reduce the duration
of the free evolution down to τ = π as a new resonance condition. If quasimomentum is considered, the
resonance condition is slightly violated. This deviation from perfectly resonant case gets enlarged, the longer
the duration of the MW rotation. Consult Eq. (9). Thus, the resonant protocol allows reducing the impact
of violation of the resonance condition on the protocol by holding the MW duration rather short.

If it is of interest to exploit the symmetry discussed in Sec. 4.5, one has to consider that this symme-
try is broken if perturbations from the ideal case are considered. This raises the question of whether this
break of symmetry would be too large to be exploited. The consequence would be that both internal state
momentum distributions would need to be measured anyways. However, the fidelity curves from Fig. 12 do
not suggest such thing. They state that the deviation from the unperturbed case increase in a similar way
whether both states are measured or only one, accordingly to Sec. 4.5.

4.7 Light shift
So far the influence of the cos2-terms from Sec. 1.2.4 have been implicitly assumed to be fully compensated.
Numerical tests showed that the topological signal fully decays if the light-shift effects are included. Thus
the light shift effects must be at least partially be compensated. Since we have two operators K̂1 and K̂2

with different kick strengths, it might be hard to compensate for both at once. The suggestion is to only
compensate for the operator at constant kick strength K̂1. The compensation is proposed in the following
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Figure 13: The upper plots show the theoretical prediction for the steps in different stages of compensation
of the light shift. The lower images show the value of the function cos(K1)cos(K2) within the configuration
space. The bandgap and thus the topological winding number can only change if this function is equal to
±1. Note that this condition is fulfilled at the phase transitions for the partially and fully compensated
case. Within the uncompensated case, it appears that this function is almost ±1 across the full range of k2,
implying instability for the topological phases.

way:

K̂1 =

(
e−ik1cos(θ) 0

0 eik1cos(θ)

)
→

(
e−ik1cos(θ) 0

0 eik1cos(θ)

)
(75)

K̂2 =

(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
→
(
e−i(k2−k1) 0

0 eik(k2−k1)

)(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
(76)

With the equations from Sec. 2.5 one is able to conduct predictions for the topological steps of the altered
operators Û1 and Û2. One simply implements K1 = k1cos(θ) and K2 = k2(sin(θ) + 1)− k1 for Eq. (31), (32).
Analogous calculation can be done for the fully uncompensated case. The results are presented in Fig. 13.
Note that the fully uncompensated case indicates topological instability, seen by the plot of cos(K1)cos(K2)
within the configuration space. Even though the operators trivially conserve chiral symmetry if the light
shift is introduced, it appears that within this configuration the bandgap might always be closed, and thus
the topological phase is not protected. At k2 = π and k2 = 2π the signal deviates from zero. For this special
choice for k2, the corresponding light shift matrix compensates itself.(

e−ik2 0
0 eik2

)(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
−−−→
k2=π

(
−1 0

0 −1

)(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
(77)(

e−ik2 0
0 eik2

)(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
−−−−→
k2=2π

(
1 0
0 1

)(
e−ik2sin(θ) 0

0 eik2sin(θ)

)
(78)

At k2 = π the compensation is perfect besides a factor of −1, while k2 = 2π unveils perfect compensation.
Also note the region in configuration space for the fully compensated case, closely to k2 = 0 with
cos(K1)cos(K2) . 1. Within the simulations, a step on the first plateau has been observed. This region has
been excluded from the fidelity, as described in Sec. 4.6.1. From this image one might conclude that this
region is slightly unstable, causing this behavior.
Most importantly, the partially compensated case shows twice the amount of steps then expected before.
Also, the jumps in the topological winding number are now only half as large. The convergence of the time-
averaged MCD on the new topological steps is illustrated in B.6. However, if the light shift is indeed partially
compensated one is able to predict and observe topological phase transitions.
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5 Conclusion

5.1 Summary
Within this thesis, we have established a new interpretation for an already existing quantum walk experi-
ment [4]. The existing discrepancies between theory and experiment could be settled by introducing a light
shift induced alternative protocol, that might have been experimentally implemented. This new interpreta-
tion displayed characteristics of linearly evolving sidearms and the dominant center region, both observed in
the experiment. By this new interpretation, the dominant center in the walk is explained by a rare combi-
nation of a walk protocol that is actually implemented with the Ĥ2 coin and a narrow initial ratchet state.
Though rare, it is still plausible that exactly this might have happened in the experiment. Since a strong
dependency of the fraction of the central region has been found on the size of the initial ratchet, this new
theory would even be testable. The prediction is that for a larger ratchet the center region would naff off,
while the original theory predicted that it would be independent of the initial ratchet size.

Also, further considerations on an experimental implementation of topological phase transitions in the double
quantum kicked rotor have been made. Shortening the duration of the microwave rotations down to a quarter
of the Talbot time demands manipulating the protocol, to construct a resonant configuration. This new pro-
tocol causes a change in sign within the topological phase curves that can be compensated by manipulating
the microwave applications if desired. Also, the experimental effort could be reduced by only measuring
either one internal state or independently of the internal states the joint momentum distribution. To do this,
the discussed symmetries must be respected.
From investigations regarding the stability of the system, it is to say that the fluctuations in the complex
phase of the microwave operator must be kept under sufficient control. If the fluctuations are adequately
small, the topological steps stay visible. If they are however too large, the signal will not prevail. Also,
exploiting the symmetry for measuring only one internal state does not indicate any significant disadvantage
regarding the stability of the topological phase transitions.
Considering light-shift effects, it becomes clear that those have to be at least partially compensated. If they
are indeed partially compensated as suggested, a topological signal is expected to be visible. However in
this case the phase diagram for the winding number does change. Since this change can be predicted by
the theory behind topological phase transitions in the double quantum kicked rotor, this would not pose a
problem for the interpretation of the experimental data. In contrast it might even simplify the data taking,
since a smaller parameter-window in k2 would be sufficient to demonstrate topological phase transitions.

5.2 Outlook

Figure 14: Topological curves for 50 realizations of the Floquet implementation of the DQKR. Each MW
rotation considers a free evolution of τ = 4π

6 . The addition of a small amount of dynamic noise within the
MW has stabilizing effects on the topological curves.
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Within the process of finding an improved protocol for the double kicked quantum rotor, several possi-
bilities for quasi-resonant protocols have been investigated. One idea was, that the one cycle of the evolution
operators from Eq. (44) and Eq. (45) should correspond to a duration of a full Talbot period. Consequently,
each microwave was assumed to have a duration of τ = 4π

6 . Even though the topological curves were strongly
disturbed, C̄2 from Fig. 14 experienced stabilization, as dynamic phase noise in for the MW was introduced.
Too much noise destroyed the signal, just as before, but a sufficiently small amount had surprisingly stabiliz-
ing effects. Investigating this auto-stabilization could be an interesting subject for further theoretical research.

Ref. [5] discusses how the topological winding number connects to the number of protected E = 0 and
E = π energy states. From Fig. 13 it can be seen by comparing the ideal case with the case that considers
partially compensated light shift effects, that within the range of k2 ∈ [0 : 2.5π] the configurations closing
the bandgap are differently placed in configuration space, doubling the number of steps.
Returning to the underlying theory, it could be asked how the different placement of these E = 0 and E = π
states might be understood and whether the emergence of the factor 2 in the number of steps might be ex-
plained. From the connections between the „new“ steps and the number of protected edge states, one might
achieve a deeper understanding of the system.
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Appendix

A Momentum distribution of kicked rotor walk with new walk pro-
tocol

A.1 Dependency on kick strength
In Ref. [30] it has been demonstrated that also for a different protocol an increase in the kick strength induces
a peak in the center of the corresponding momentum distribution. This indicates that a dominant peak in
the center might be typical behavior for strong dispersion in kicked-rotor walks. The current walk protocol
appears to be rather susceptible to these effects since the peak is already observable at a rather small k as
demonstrated in Fig. 15.

Figure 15: Shown are momentum distributions for QKR walks implemented by the Ŷ - gate and evolved
with the Ĥ2-coin. It is demonstrated, that the peak in the center of the distribution becomes less prominent
by lowering the kick strength k. This can be understood as an indicator that this behavior is caused by
dispersion. The initial state is given by |ψin〉 = 1

2 |2〉 ⊗ (|n = 0〉+ i|n = 1〉.

A.2 Analytical calculation of the momentum distribution
Following along the steps taken in Ref. [29] to obtain the momentum distribution for a similar walk protocol,
we investigate in full detail the momentum distribution for the alternatively suggested walk protocol from
Sec. 3.2.

A.2.1 Setup

One step in the quantum walk of interest is given by the evolution operator U . The walk will be initialized
using the Y -matrix as the gate.

U = H2K =
1√
2

(
1 1
1 −1

)(
e−ikcos(θ) 0

0 eikcos(θ)

)
(79)

Y =
1√
2

(
1 i
i 1

)
(80)

To solve for the evolution of the walk, one has to solve for UT . With N ≡ T − 1 and N ≥ 0. One defines UT
in the following fashion:

UT =

(
1√
2

)T (
A

(T−1)
1 (k) A

(T−1)
2 (k)

A
(T−1)
3 (k) A

(T−1)
4 (k)

)
. (81)

Repeating the steps of the calculation in Ref. [29], the ambition is to express the matrix elements as poly-
nomials in the kick operator e±ik cos(θ) and then translate the resulting evolution back to momentum space.
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Looking at the first few orders of the evolution, one notices that the matrix elements are related to each
other by

A
(N)
1 (k) = (−1)(N+1)A

(N)
4 (−k), (82)

A
(N)
2 (k) = (−1)(N+1)A

(N)
3 (−k). (83)

The matrix entries will be found to be recursive polynomials. The initial conditions for those polynomials
are

p
(0)
1 (z̃) = p

(0)
2 (z̃) = 1, (84)

p
(1)
1 (z̃) = z ≡ e−ikcos(θ) + eikcos(θ), (85)

p
(1)
2 (z̃) = z̃ ≡ e−ikcos(θ) − eikcos(θ). (86)

It is to be demonstrated by induction that the following equations for calculating the matrix elements hold
for arbitrary N :

A
(N)
1 (z̃) = e−ikcos(θ)p

(N)
1 (z̃) (87)

A
(N)
2 (z̃) = eikcos(θ)p

(N)
2 (z̃), (88)

where the polynomials p(N)
1 and p(N)

2 are defined by a recursion formula.

p(N) = z̃p(N−1) + 2p(N−2). (89)

It will be shown that the solution to the recursion can be written as polynomials in the kick operator, i.e.,

p
(N)
1/2 =

N∑
l=0

al,1/2 e
ikcos(θ)(N−2l). (90)

If one compares to Ref. [29], one should notice slight differences in the setup. The computations will be
somewhat analogous, but will also show differences in the details. In this section, the matrix elements in
Eq. (82) and Eq. (83) have different relations amongst each other. Also the polynomials in Eq. (84 - 86) are
now functions in z̃ instead of having z. Slight deviations are also found in Eq. (87) and Eq. (88) and also the
recursion formula shows the same structure but varies from the one reported in Ref. [29] for the walk with
Y instead of H2.

A.2.2 Solution to the recursion formula

Let us assume for now that Eq. (89) is true. To solve the equation one may choose the ansatz p(N)(z) ≡ xN (z)
and plug it in which yields

xN = z̃x(N−1) + 2x(N−2). (91)

This leads to a quadratic formula
x2 = z̃x+ 2, (92)

with the solution

x1/2 =
z̃ ±
√
z̃2 + 8

2
. (93)

The recursion formula from above satisfies linearity. Therefore the general solution is given by a linear
combination of both solutions.

p
(N)
1/2 (z) = c1x

(N)
1 + c2x

(N)
2 (94)

The coefficients c1 and c2 can be found by putting in the initial conditions which leads to

p
(N)
1 =

1

2

(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(95)
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p
(N)
2 =

1

2

(
1 +

z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
. (96)

Since the initial conditions and the recursion showed some differences from Ref. [29], we obtained a solution
for the polynomials that differ in several signs and as stated above, the polynomials have their argument in
z̃.

A.2.3 Prerequisites

Before continuing some simple relations will be shown that will later prove themselves to be useful:

z2 − z̃2 = (e−ikcos(θ) + eikcos(θ))2 − (e−ikcos(θ) − eikcos(θ))2

= e−2ikcos(θ) + e2ikcos(θ) + 2− (e−2ikcos(θ) + e2ikcos(θ) − 2)

= 4

(97)

(z − z̃)(zz̃ + z̃2 + 8) =
(
e−ikcos(θ) + eikcos(θ) − (e−ikcos(θ) − eikcos(θ))

)
·
(

(e−ikcos(θ) + eikcos(θ))(e−ikcos(θ) − eikcos(θ)) + (e−ikcos(θ) − eikcos(θ))2 + 8
)

= 2eikcos(θ)
(
e−2ikcos(θ) − e2ikcos(θ) + (e−2ikcos(θ) + e2ikcos(θ) − 2) + 8

)
= 2eikcos(θ)

(
2e−2ikcos(θ) + 6

)
= 4

(
e−ikcos(θ) + 3eikcos(θ)

)
= 4

(
2(e−ikcos(θ) + eikcos(θ))− 2(e−ikcos(θ) − eikcos(θ))

)
= 4(2z − z̃)

(98)

z̃α = (e−ikcos(θ) − eikcos(θ))α

=

α∑
j=0

(
α

j

)
(e−ikcos(θ))j(−eikcos(θ))α−j

=

α∑
j=0

(
α

j

)
(−1)α−jeikcos(θ)(α−2j)

(99)

∫ 2π

0

einθeikcosθdθ = 2πinJn(k) (100)

J−a(k) = (−1)aJa(k) (101)

With Eq. (100) from Ref. [36].

A.2.4 Proof for recursion

We have already solved the recursion above by the ansatz. We still have to show that the solution of the
recursion also solves for the matrix elements as stated in Eqs. (87) and (88). The proof will follow by
induction. The statement is trivially true for N = 0, by the choice of the initial conditions. Now let the
statement be true for N . Then we will show that the statement will also be true for N + 1. It is

U (T+1) ∝

(
A

(T−1)
1 (k) A

(T−1)
2 (k)

A
(T−1)
3 (k) A

(T−1)
4 (k)

)(
e−ikcos(θ) eikcos(θ)

e−ikcos(θ) −eikcos(θ)
)
. (102)

From that we can conclude:

A
(N+1)
1 = e−ikcos(θ)(A

(N)
1 +A

(N)
2 ) (103)
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A
(N+1)
2 = eikcos(θ)(A

(N)
1 −A(N)

2 ). (104)

First we proof the induction for A1.

A
(N+1)
1 = e−ikcos(θ)(A

(N)
1 +A

(N)
2 ) (105)

= e−ikcos(θ)
(
e−ikcos(θ)p

(N)
1 + eikcos(θ)p

(N)
2

)
(106)

= e−ikcos(θ)
(
z + z̃

2
p
(N)
1 +

z − z̃
2

p
(N)
2

)
(107)

= e−ikcos(θ)
(
z̃p

(N)
1 +

z − z̃
2

(p
(N)
1 + p

(N)
2 )

)
(108)

= e−ikcos(θ)

z̃p(N)
1 +

z − z̃
2

1

2

(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N

+
1

2

(
1 +

z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(109)

= e−ikcos(θ)

z̃p(N)
1 +

z − z̃
2

(
1

2

(
2 +

2z√
z̃2 + 8

))(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
2− 2z√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(110)

= e−ikcos(θ)

z̃p(N)
1 +

(z − z̃
2

+
z(z − z̃)
2
√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
z − z̃

2
− +

z(z − z̃)
2
√
z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N (111)

= e−ikcos(θ)

z̃p(N)
1 +

(
(z − z̃z̃)

4
+
zz̃(z − z̃)
4
√
z̃ + 8

+

√
z̃ + 8(z − z̃)

4
+
z(z − z̃)

4

)(
z̃ +
√
z̃2 + 8

2

)N−1

+

(
(z − z̃z̃)

4
− zz̃(z − z̃)

4
√
z̃ + 8

−
√
z̃ + 8(z − z̃)

4
+
z(z − z̃)

4

)(
z̃ −
√
z̃2 + 8

2

)N−1
(112)

= e−ikcos(θ)

z̃p(N)
1 +

(
(z − z̃)(zz̃ + z̃2 + 8)

4
√
z̃2 + 8

+
z2 − z̃2

4

)(
z̃ +
√
z̃2 + 8

2

)N−1

+

(
− (z − z̃)(zz̃ + z̃2 + 8)

4
√
z̃2 + 8

+
z2 − z̃2

4

)(
z̃ −
√
z̃2 + 8

2

)N−1 (113)

= e−ikcos(θ)

z̃p(N)
1 +

(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N−1
+

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N−1
(114)

= e−ikcos(θ)
[
z̃p

(N)
1 + 2p

(N−1)
1

]
(115)

Therefore the induction for A1 is complete. It remains to finish the induction for A2.

A
(N+1)
2 = eikcos(θ)(A

(N)
1 −A(N)

2 ) (116)
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= eikcos(θ)
(
e−ikcos(θ)p

(N)
1 − eikcos(θ)p(N)

2

)
(117)

= eikcos(θ)
(
z + z̃

2
p
(N)
1 − z − z̃

2
p
(N)
2

)
(118)

= eikcos(θ)
(
z̃p

(N)
2 +

z + z̃

2
(p

(N)
1 − p(N)

2 )

)
(119)

= eikcos(θ)

z̃p(N)
2 +

z + z̃

2

1

2

(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N

−1

2

(
1 +

z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
− 1

2

(
1− z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(120)

= eikcos(θ)

z̃p(N)
2 +

z + z̃

2

1

2

(z − z̃)√
z̃2 + 8

(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(−z + z̃)√
z̃2 + 8

(
z̃ −
√
z̃2 + 8

2

)N 
(121)

= eikcos(θ)

z̃p(N)
2 +

(z2 − z̃2)

2
√
z̃2 + 8

(
z̃ +
√
z̃2 + 8

2

)N
+

(z̃2 − z2)

2
√
z̃2 + 8

(
z̃ −
√
z̃2 + 8

2

)N (122)

= eikcos(θ)

z̃p(N)
2 +

(
z̃(z2 − z̃2)

4
√
z̃2 + 8

+
z2 − z̃2

4

)(
z̃ +
√
z̃2 + 8

2

)N−1

+

(
z̃(z2 − z̃2)

4
√
z̃2 + 8

− z̃2 − z2

4

)(
z̃ −
√
z̃2 + 8

2

)N−1 (123)

= eikcos(θ)

z̃p(N)
2 +

(
z̃√

z̃2 + 8
+ 1

)(
z̃ +
√
z̃2 + 8

2

)N−1
+

(
− z̃√

z̃2 + 8
+ 1

)(
z̃ −
√
z̃2 + 8

2

)N−1
(124)

= eikcos(θ)
[
z̃p

(N)
2 + 2p

(N−1)
2

]
(125)

Therefore it is proofed that A1 and A2 follow the relations given above. A3 and A4 can from here on be
calculated by (82) and (83).

A.2.5 Rewriting the polynomials

To obtain the final momentum distribution, it is convenient to rewrite the polynomials into a more accessible
form. Therefore the polynomials will be rewritten into polynomials in the kick operator

pN1 =
1

2

(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(126)

=
1

2N+1

[(
1 +

2z − z̃√
z̃2 + 8

)(
z̃ +

√
z̃2 + 8

)N
+

(
1− 2z − z̃√

z̃2 + 8

)(
z̃ −

√
z̃2 + 8

)N]
(127)

=
1

2N+1

[(
z̃ +

√
z̃2 + 8

)N
+
(
z̃ −

√
z̃2 + 8

)N
+

2z − z̃√
z̃2 + 8

((
z̃ +

√
z̃2 + 8

)N
−
(
z̃ −

√
z̃2 + 8

)N)]
(128)
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=
1

2N+1

 N∑
j=0

(
N

j

)
z̃N−j

(√
z̃2 + 8

)j
+

N∑
j=0

(
N

j

)
z̃N−j

(
−
√
z̃2 + 8

)j

+
2z − z̃√
z̃2 + 8

 N∑
j=0

(
N

j

)
z̃N−j

(√
z̃2 + 8

)j
−

N∑
j=0

(
N

j

)
z̃N−j

(
−
√
z̃2 + 8

)j (129)

=
1

2N

N/2∑
j=0

(
N

2j

)
z̃N−2j

(
z̃2 + 8

)j
+

2z − z̃√
z̃2 + 8

N/2∑
j=0

(
N

2j + 1

)
z̃N−2j−1

(√
z̃2 + 8

)2j+1

 (130)

=
1

2N

N/2∑
j=0

((
N

2j

)
−
(

N

2j + 1

))
z̃N−2j

(
z̃2 + 8

)j
+ 2

N/2∑
j=0

(
N

2j + 1

)
zz̃N−2j−1

(
z̃2 + 8

)j (131)

=
1

2N

N/2∑
j=0

j∑
m=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)
z̃N−2m8m + 2

N/2∑
j=0

j∑
m=0

(
N

2j + 1

)(
j

m

)
zz̃N−2m−18m

 (132)

=
1

2N

N/2∑
j=0

j∑
m=0

N−2m∑
l=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l

)
(−1)N−2m−l · 8m · eikcos(θ)(N−2m−2l)


+

1

2N
2

N/2∑
j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
(−1)N−2m−l−1 · 8m · eikcos(θ)(N−2m−2l−2)


+

1

2N
2

N/2∑
j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
(−1)N−2m−l−1 · 8m · eikcos(θ)(N−2m−2l)


(133)

=
1

2N

N/2∑
j=0

j∑
m=0

N−2m∑
l=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l

)
(−1)N−l · 8m · eikcos(θ)(N−2m−2l)


− 1

2N
2

N/2∑
j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
(−1)N−l · 8m · eikcos(θ)(N−2m−2l−2)


− 1

2N
2

N/2∑
j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
(−1)N−l · 8m · eikcos(θ)(N−2m−2l)


(134)

=

N∑
l=0

al,1e
ikcos(θ)(N−2l) (135)

Where in the last step one has changed indices from l to l+m. Note that for the upper part in (129) all odd
powers cancel each other out, the same accounts for the uneven potencies of the lower part. Also one defined
al,1 to be

al,1 =
1

2N

N/2∑
j=0

l∑
m=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l −m

)
(−1)N−l+m · 8m

+
1

2N
2

N/2∑
j=0

l−1∑
m=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l −m− 1

)
(−1)N−l+m · 8m

− 1

2N
2

N/2∑
j=0

l∑
m=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l −m

)
(−1)N−l+m · 8m.

(136)
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Also note the factor (−1) dragged out in the third line of the coefficient al,1. That factor (−1) has a different
reason in Ref. [29] since it is not resolved from the shift of the index. Analogous steps have to be taken for
p
(N)
2 .

p
(N)
2 =

1

2

(
1 +

z̃√
z̃2 + 8

)(
z̃ +
√
z̃2 + 8

2

)N
+

1

2

(
1− z̃√

z̃2 + 8

)(
z̃ −
√
z̃2 + 8

2

)N
(137)

=
1

2N+1

[(
1 +

z̃√
z̃2 + 8

)(
z̃ +

√
z̃2 + 8

)N
+

(
1− z̃√

z̃2 + 8

)(
z̃ −

√
z̃2 + 8

)N]
(138)

=
1

2N+1

[(
z̃ +

√
z̃2 + 8

)N
+
(
z̃ −

√
z̃2 + 8

)N
+

z̃√
z̃2 + 8

(
z̃ +

√
z̃2 + 8

)N
− z̃√

z̃2 + 8

(
z̃ −

√
z̃2 + 8

)N]
(139)

=
1

2N+1

 N∑
j=0

(
N

j

)
z̃N−j

(√
z̃2 + 8

)j
+

N∑
j=0

(
N

j

)
z̃N−j

(
−
√
z̃2 + 8

)j

+
z̃√

z̃2 + 8

 N∑
j=0

(
N

j

)
z̃N−j

(√
z̃2 + 8

)j
−

N∑
j=0

(
N

j

)
z̃N−j

(
−
√
z̃2 + 8

)j (140)

=
1

2N

N/2∑
j=0

(
N

2j

)
z̃N−2j

(
z̃2 + 8

)j
+

z̃√
z̃2 + 8

N/2∑
j=0

(
N

2j + 1

)
z̃N−2j−1

(√
z̃2 + 8

)2j+1

 (141)

=
1

2N

N/2∑
j=0

(
N

2j

)
z̃N−2j

(
z̃2 + 8

)j
+

N/2∑
j=0

(
N

2j + 1

)
z̃N−2j

(
z̃2 + 8

)j (142)

=
1

2N

N/2∑
j=0

(
N + 1

2j + 1

)
z̃N−2j

(
z̃2 + 8

)j (143)

=
1

2N

N/2∑
j=0

j∑
m=0

(
N + 1

2j + 1

)(
j

m

)
z̃N−2m8m

 (144)

=
1

2N

N/2∑
j=0

j∑
m=0

N−2m∑
l=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l

)
(−1)N−2m−l · 8m · eikcos(θ)(N−2m−2l)

 (145)

=
1

2N

N/2∑
j=0

j∑
m=0

N−2m∑
l=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l

)
(−1)N−l · 8m · eikcos(θ)(N−2m−2l)

 (146)

=
1

2N

N∑
l=0

al,2 · eikcos(θ)(N−2l) (147)

Again in the last step the index l has been shifted to l +m and al,2 has been defined to be:

al,2 =
1

2N

N/2∑
j=0

l∑
m=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l −m

)
(−1)N−l+m · 8m (148)

Please note that in (136) and (148) the factor (−1)N is a global factor and therefore irrelevant.

A.2.6 Obtaining the momentum-distribution

Since the intention is to implement a ratchet state consider Eq. (18). As already stated above, the ratchet
state is initialized by the application of the beamsplitter matrix Ŷ . We organise our internal basis |1〉 ≡

(
0
1

)
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and |2〉 ≡
(
1
0

)
. Therefore the total initial state is given by

ψin =
1√
2

(i|1〉+ |2〉)⊗ 1√
S

∑
s

e−is
π
2 |n = s〉. (149)

The total momentum distribution is given as the sum of the momentum distributions of both the respective
internal states.

P (n, T ) = P|1〉(n, T ) + P|2〉(n, T ) (150)

=

[∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ〈θ, 1|UT |ψin〉dθ
∣∣∣∣2 +

∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ〈θ, 2|UT |ψin〉dθ
∣∣∣∣2
]

(151)

=

∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(

1√
2

)T
〈θ, 1|

(
A

(T−1)
1 (k) A

(T−1)
2 (k)

A
(T−1)
3 (k) A

(T−1)
4 (k)

)
1√
2

(i|1〉+ |2〉)⊗ 1√
S

∑
s

e−is
π
2 |n = s〉

∣∣∣∣∣
2

+

∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(

1√
2

)T
〈θ, 2|

(
A

(T−1)
1 (k) A

(T−1)
2 (k)

A
(T−1)
3 (k) A

(T−1)
4 (k)

)
1√
2

(i|1〉+ |2〉)⊗ 1√
S

∑
s

e−is
π
2 |n = s〉

∣∣∣∣∣
2


(152)

=
1

2T+1S

∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(
iA

(T−1)
1 +A

(T−1)
2

)∑
s

(−i)s〈θ|n = s〉dθ

∣∣∣∣∣
2

+

∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(
iA

(T−1)
3 +A

(T−1)
4

)∑
s

(−i)s〈θ|n = s〉dθ

∣∣∣∣∣
2
 (153)

=
1

2T+1S

∣∣∣∣∣ 1

2π

∫ 2π

0

e−inθ
(
iA

(T−1)
1 +A

(T−1)
2

)∑
s

(−i)seisθdθ

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

2π

∫ 2π

0

e−inθ
(
iA

(T−1)
3 +A

(T−1)
4

)∑
s

(−i)seisθdθ

∣∣∣∣∣
2
 (154)

=
1

2T+1S

∣∣∣∣∣ 1

2π

∫ 2π

0

∑
s

(−i)se−i(n−s)θ
(
i

N∑
l=0

al,1e
ikcosθ(N−2l−1) +

N∑
l=0

al,2e
ikcosθ(N−2l+1)

)
dθ

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

2π

∫ 2π

0

∑
s

(−i)se−i(n−s)θ
(
i

N∑
l=0

(−1)Nal,1e
−ikcosθ(N−2l−1) +

N∑
l=0

(−1)N+1al,2e
−ikcosθ(N−2l+1)

)
dθ

∣∣∣∣∣
2


(155)

=
1

2T+1S

[∣∣∣∣∣i
N∑
l=0

∑
s

al,1(−i)si−(n−s)J−(n−s) ((N − 2l − 1)k)

+

N∑
l=0

∑
s

al,2(−i)si−(n−s)J−(n−s) ((N − 2l + 1)k)

∣∣∣∣∣
2

+

∣∣∣∣∣i
N∑
l=0

∑
s

al,1(−1)N (−i)si−(n−s)J−(n−s) (−(N − 2l − 1)k)

+

N∑
l=0

∑
s

al,2(−1)N+1(−i)si−(n−s)J−(n−s) (−(N − 2l + 1)k)

∣∣∣∣∣
2


(156)
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=
1

2T+1S

∣∣∣∣∣i
N∑
l=0

∑
s

al,1(−1)(n−s)J(n−s) ((N − 2l − 1)k) +

N∑
l=0

∑
s

al,2(−1)(n−s)J(n−s) ((N − 2l + 1)k)

∣∣∣∣∣
2

+

∣∣∣∣∣i
N∑
l=0

∑
s

al,1(−1)(n−s)J(n−s) (−(N − 2l − 1)k) +

N∑
l=0

∑
s

al,2(−1)(n−s)J(n−s) (−(N − 2l + 1)k)

∣∣∣∣∣
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(157)

=
1

2T+1S

( N∑
l=0

∑
s

al,1(−1)sJ(n−s) ((N − 2l − 1)k)

)2

+

(
N∑
l=0

∑
s

al,2(−1)sJ(n−s) ((N − 2l + 1)k)

)2

+

(
N∑
l=0

∑
s

al,1(−1)sJ(n−s) (−(N − 2l − 1)k)

)2

+

(
N∑
l=0

∑
s

al,2(−1)sJ(n−s) (−(N − 2l + 1)k)

)2
 .

(158)

Even though the computation shows variations in its details, the momentum distributions found in Eq. (158)
and in Ref. [29] are of the same analytical form. Nevertheless, the coefficients al,1 and al,2 differ from each
other.

B Background considerations on investigations regarding the DQKR
system

B.1 rewriting chiral symmetric operators
The following calculation intends to rewrite the kicks in the evolution operator into an experimentally appli-
cable form. This section’s purpose is to avoid secondary confusion by presenting a full calculation for both
kick-operators, highlighting the error made in Ref. [6, 28] as it appears.
The Pauli matrices are given for reasons of brevity below.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(159)

Using σ2
j = 1 it follows simply by Taylor-expansion:

e−iXσj = cos(X)1− isin(X)σj (160)

With X being an arbitrary variable for now. With that relation one finds for the different Pauli-matrices
expressions to rewrite the exponential.

e−iXσx =

(
cos(X) −i sin(X)
−i sin(X) cos(X)

)
e−iXσy =

(
cos(X) −sin(X)
sin(X) cos(X)

)
e−iXσz =

(
e−iX 0

0 eiX

)
(161)

Therefore we can write:

M̂(−π
2
, 0)e−iKσzM̂(

π

2
, 0) =

(
cos(π4 ) −sin(π4 )
sin(π4 ) cos(π4 )

)(
e−iK 0

0 eiK

)(
cos(π4 ) sin(π4 )
−sin(π4 ) cos(π4 )

)
(162)

=
1

2

(
1 −1
1 1

)(
e−iK 0

0 eiK

)(
1 1
−1 1

)
(163)

=
1

2

(
1 −1
1 1

)(
e−iK e−iK

−eiK eiK

)
(164)

=
1

2

(
e−iK + eiK e−iK − eiK
e−iK − eiK e−iK + eiK

)
(165)

=

(
cos(K) −i sin(K)
−i sin(K) cos(K)

)
= e−iKσx (166)
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With M̂(α, χ) from Eq. (12). Therefore we can write:

e−iKσx = e−i
π
4 σye−iKσzei

π
4 σy = M̂(−π

2
, 0)e−iKσzM̂(

π

2
, 0) (167)

However in the Ref. [6, 28]:

e−iKσx = ei
π
4 σye−iKσze−i

π
4 σy = M̂(−π

2
, 0)e−iKσzM̂(

π

2
, 0) (168)

For the sake of completeness we can repeat the same calculation for the kick in y-direction.

M̂(−π
2
,
π

2
)e−iKσzM̂(

π

2
,
π

2
) =

(
cos(π4 ) i sin(π4 )

i sin(π4 ) cos(π4 )

)(
e−iK 0

0 eiK

)(
cos(π4 ) −i sin(π4 )

−i sin(π4 ) cos(π4 )

)
(169)

=
1

2

(
1 i
i 1

)(
e−iK 0

0 eiK

)(
1 −i
−i 1

)
(170)

=
1

2

(
1 i
i 1

)(
e−iK −i e−iK
−i eiK eiK

)
(171)

=
1

2

(
e−iK + eiK −i (e−iK − eiK)

i (e−iK − eiK) e−iK + eiK

)
(172)

=

(
cos(K) − sin(K)
sin(K) cos(K)

)
= e−iKσy (173)

⇒ e−iKσy = ei
π
4 σxe−iKσze−i

π
4 σx = M̂(−π

2
,
π

2
)e−iKσzM̂(

π

2
,
π

2
) (174)

Just as stated in the Ref. [28].

B.2 Prerequisites for protocol resonance considerations

First let us consider the free evolution operator P̂ = e−i
(n̂+β)2

2 τ , with for a quarter Talbot time τ = π and
neglecting quassimomentum β = 0. It is trivially true that when an integer number n is even, then the square
of the number is also even. The same conclusion can be drawn for uneven numbers. Under this consideration,
we can identify similarly to Ref. [28] the free evolution operator with the shift operator in local space.

P 2
π = (e−i

n2

2 π)2 = e−in
2π =

{
1 n = 2j
−1 n = 2j + 1

≡ e−inπ ≡ T (π) (175)

From here T̂ (π) will denote the shift operator in angular momentum space for θ = π
Please note the following relations:

1) The following MW-applications correspond to inverse rotations:

M(
π

2
, 0) = M(−π

2
, 0)−1 (176)

M(−π
2
,
π

2
) = M(

π

2
,
π

2
)−1 (177)

2) The free evolution operator for the two-state system commutes with the microwaves since the entries of
the MW-matrix are scalar values.

P̂ = e−i
(n̂+β)2

2 τ⊗1 = e−i
(n̂+β)2

2 τ · 1 (178)

⇒ P̂ M̂(α1, χ1)P̂ M̂(α2, χ2) = M̂(α1, χ1)M̂(α2, χ2)P̂ 2 (179)

= M̂(α1, χ1)M̂(α2, χ2)T̂ (π) (180)

3) Consider how the translation operator affects the kick operators K̂1 and K̂2:

T̂ (π)K̂1,2(k, θ) = K̂1,2(k, θ + π) = K̂1,2(−k, θ) ≡ K̂−11,2 (181)

T̂ (2π)K̂1,2(k, θ) = K̂1,2(k, θ + 2π) = K̂1,2(k, θ) (182)
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B.3 Local properties

Consider the sequence P (β = 0, τ = π)n = e−i
n2

2 π = (−i)n2

. It will be proofed by induction that the
following is true:

1) if n = 2j → (−i)n
2

= 1 (183)

2) if n = 2j + 1→ (−i)n
2

= −i (184)

The induction will be shown over the integer j. To show 1) Let n be even. The statement is trivially true
for j = 0. So now let the statement above be true for j − 1. It is j2 = (j − 1)2 + 2j − 1. For n = 2j we can
therefore compute n2 = 4j2 = 4(j − 1)2 + 8j − 4. Thus we can conclude:

(−i)n
2

= (−i)4(j−1)
2+8j−4 = (−i4(j−1)

2

(−i)8j(−i)4 = (−i)4(j−1)
2

= 1(j−1)
2

= 1 (185)

It remains to show the induction for 2). So let n be odd. Again the statement follows trivially for j = 0, so
let the statement be true for j − 1. Analogously to above we find: n2 = (2j)2 + 4j + 1. Therefore:

(−i)n
2

= (−i)(2j)
2+4j+1 = (−i)(2j)

2

(−i)4j(−i) = −i (186)

In the last step we have used the result from 1) and (−i)4j = 1.
From above we conclude that P̂π 6= e−i

n̂
2 π, so P̂π can not casually be identified with the translation operator

in local space. Yet, within the operators Û1 and Û2 the MWs and thus indirectly free evolutions always
appear in pairs. Therefore it is still possible within our specific configuration to identify P̂ (β = 0, τ = π)

with the translation operator T̂ (π2 ) ≡ e−i n̂2 π.

B.4 Compensation of sign
As a consequence of the resonant protocol, the kick-lattice structure is flipped in local space. Therefore the
evolution of the wave functions of the internal states is mirrored and the MCD experiences a change in sign.
By changing the MW configuration in the protocol, the orientation of the kick-lattice can be changed again
back to its original orientation. This way the change in sign in the MCD can be compensated.

M̂(−π
2
, 0)e−ik1cos(θ̂)σzM̂(

π

2
, 0) =

(
cos(π4 ) −sin(π4 )
sin(π4 ) cos(π4 )

)(
e−ik1cos(θ̂) 0

0 eik1cos(θ̂)

)(
cos(π4 ) sin(π4 )
−sin(π4 ) cos(π4 )

)
(187)

=
1

2

(
1 −1
1 1

)(
e−ik1cos(θ̂) 0

0 eik1cos(θ̂)

)(
1 1
−1 1

)
(188)

=
1

2

(
1 −1
1 1

)(
e−ik1cos(θ̂) e−ik1cos(θ̂)

−eik1cos(θ̂) eik1cos(θ̂)

)
(189)

=
1

2

(
e−ik1cos(θ̂) + eik1cos(θ̂) e−ik1cos(θ̂) − eik1cos(θ̂)

e−ik1cos(θ̂) − eik1cos(θ̂) e−ik1cos(θ̂) + eik1cos(θ̂)

)
(190)

=
1

2

(
1 1
−1 1

)(
eik1cos(θ̂) −eik1cos(θ̂)

e−ik1cos(θ̂) e−ik1cos(θ̂)

)
(191)

=
1

2

(
1 1
−1 1

)(
eik1cos(θ̂) 0

0 e−ik1cos(θ̂)

)(
1 −1
1 1

)
(192)

=

(
cos(π4 ) sin(π4 )
−sin(π4 ) cos(π4 )

)(
eik1cos(θ̂) 0

0 e−ik1cos(θ̂)

)(
cos(π4 ) −sin(π4 )
sin(π4 ) cos(π4 )

)
(193)

= M̂(
π

2
, 0)eik1cos(θ̂)σzM̂(−π

2
, 0) (194)
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B.5 Simulations
Simulating three different models for fluctuations in χ, the stability of the topological phase transitions un-
der these fluctuations is investigated. The simulations calculating the MCD from both internal states are
presented in Sec. 4.6.2. The symmetry from Sec. 4.5 allows for either measuring only one internal state or
measuring the joint momentum distribution. Within this section, more detailed investigations are presented
on the stability of the topological phase transitions, if this symmetry is exploited.

Figure 16: Implementation of Model 1. The fidelity shows a weak dependency on the range of phase fluctua-
tions ∆. The exemplary image at ∆ = π

6 is close to the ideal case for 5 steps in the evolution. It is seen that
quasimomentum is distorting the steps slightly stronger compared to Fig. 9. The simulation is implemented
for 1000 realizations and one internal state is measured to compute the MCD, exploiting the symmetry from
Sec. 4.5. The initial state is given by |ψin〉 = |2〉 ⊗ |n = 0〉).

Figure 17: Implementation of Model 2. The fidelity shows a strong dependency on the range of phase
fluctuations ∆. The exemplary image at ∆ = π

6 shows already some perturbations within the topological
curve, while the steps stay well visible. The impact of quasimomentum leads to some additional deformation
but does not pose a great threat to the „survival “ of the steps, as long the phase noise within the MW is
controlled. The simulation is implemented for 1000 realizations and one internal state is measured to compute
the MCD, exploiting the symmetry from Sec. 4.5. The initial state is given by |ψin〉 = |2〉 ⊗ |n = 0〉.
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Figure 18: Implementation of Model 3. The fidelity shows a strong dependency on the range length of
the steps within the phase drift, dependent on ∆. The exemplary image at ∆ = π

6 shows already some
deformations within the topological curve. The steps stay well visible, but the phase transition is not as
sharp as in model 1 and model 2. above. The impact of quasimomentum does not significantly contribute
to the deformation of the curve. The simulation is implemented for 1000 realizations and one internal state
is measured to compute the MCD, exploiting the symmetry from Sec. 4.5. The initial state is given by
|ψin〉 = |2〉 ⊗ |n = 0〉.

Figure 19: Implementation of the different phase noise models. Shown is the impact of perturbance ∆ ∈ [0;π]
on the topological curves. The MCD is averaged over five applications of the evolution operator. As suggested
by the fidelity curves the dynamic models (2) and (3) show strong signal decay for increasing ∆. The static
model (1) shows a very weak dependency on ∆. Exploiting the symmetry from Sec. 4.5, the momentum
distribution is not measured for one internal state specifically, but P (t) = P (t)|1〉 + P (t)|2〉. The simulations
are implemented for 1000 realisations and the initial state is given by |ψin〉 = |2〉 ⊗ |n = 0〉.
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B.6 Light shift compensation
If light-shift effects are introduced, the topological signal is predicted to decay. If they are again partially
compensated, as suggested in Sec. 1.2.4, topological steps are visible again but they deviate from the ideal
case. Fig. 20 demonstrates the convergence of the time-averaged mean chiral displacement on the steps pre-
dicted by the underlying theory. The bottom line is that also for the new configuration the MCD converges
onto the topological steps. That means in principle this configuration could be experimentally observed.

Figure 20: Illustrated is the convergence of the time-averaged MCD for the chiral symmetric evolution
operators Û1 and Û2 for the partially light shift compensated case. The theoretical curves calculated by
Eq. (21) are represented in black. For five applications of the evolution operator, the steps are already quite
well visible, even though deviations seem to become stronger at higher values for the topological number.
Better convergence is achieved at higher time steps.
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